
Increasing Java Performance in

Memory-Constrained Environments Using
Explicit Memory Deallocation

Gábor Paller, gabor.paller@nokia.com

Nokia Research Center, Köztelek str. 6, Budapest 1092, Hungary,

Abstract. As more and more powerful Java implementations begin to
arrive to mobile devices, memory footprint problems are again encoun-
tered. These problems were recognized earlier in desktop- and server
computer environments but these computers have significant amount of
memory and more memory can be added in a relatively inexpensive way.
Due to several reasons - e.g. size, cost, power consumption - the aver-
age amount of memory available in mobile devices is not expected to
grow dramatically in the near future. The performance of Java programs
with certain, very frequent memory consumption patterns suffer in these
memory-constrained environments.
This paper proposes usage of explicit memory reclamation in Java. The
Java bytecode carries information when and which object should be deal-
located. This information is inserted into the bytecode after the genera-
tion of Java class files. The effect is that the garbage collector will never
have to collect the explicitly deallocated objects therefore it has to run
less frequently and the performance of the Java program increases sig-
nificantly. The paper describes the method of inserting the explicit deal-
location information, the JVM modifications that make use of the deal-
location information and an architecture so that the proposed solution
can be used efficiently and securely. The effectiveness of the technique
is demonstrated by a number of benchmark evaluations and it produced
up to 25% execution time gain in case of memory-constrained heap.

1 Introduction

Java is widely believed to be more productive programming language than e.g.
C++ and developers make less faults when coding in Java [3]. Garbage-collected
memory management is mentioned as one of the key features making Java more
attractive. Garbage collection decreases the coding effort and eliminates whole
classes of software faults. On the other hand, garbage collection still introduces
performance overhead.

There has been significant effort to enhance the performance of garbage col-
lectors and the results are convincing if the available memory is large enough.
In fact, it was shown that if the amount of memory is much larger than the
number of reachable cells, garbage collection can be faster than stack allocation
[1]. This statement was challenged in [2] but the disagreement was only about



the efficiency of stack allocation vs. heap allocation. The argument that garbage
collection comes almost for free if appropriate algorithms are used and the avail-
able memory is sufficiently large was agreed by [2]. While this statement may be
satisfying for desktop computers and servers and helps to explain the common
wisdom that “if you use Java, you just need to add more memory”, it does not
help more memory-constrained environments where adding memory is simply
not feasible. With the advent of mobile devices (PDAs, mobile phones, etc.) the
importance of memory-constrained environments has grown significantly. Many
of these devices also act as application platforms. Java’s independence of hard-
ware and software platforms and the increased developer productivity makes
Java environment attractive for these platforms.

The garbage-collected nature of Java already caused problems in real-time
environments [15]. Real-time Java expects the programmer to explicitly scope
the program’s memory allocation so that whole regions can be freed when scopes
are left. This is not an attractive option for developing general Java software.

Earlier Java implementations, like Connected Limited Device Configuration
(CLDC) for memory-constrained devices did not reveal the garbage collection
problem. In CLDC environments programmers were required not to produce
excessive amount of garbage. With the quite limited capabilities of the early
CLDC Java implementations, developers made serious effort to save memory
anyway therefore the practice of allocating objects early on and reusing them as
long as possible became widely accepted [9].

As mobile devices become more and more powerful, it became realistic for
them to host a Java environment that is more similar to the popular J2SE (a.k.a.
“desktop Java”). Connected Device Profile (CDC) offers quite good compatibil-
ity with J2SE 1.3 bringing most of the J2SE features to mobile devices. CDC not
only brings the most popular Java APIs to mobile environments, it also brings
a large number of Java software designed for J2SE environment which were not
written with memory conservation in mind. Some popular APIs and technolo-
gies also tend to consume lot of memory, for example DOM parsing of XML
files can take prohibitively large amount of memory. The battery conservation
issue creates another interesting dilemma; in order to be able to power down
memory banks, garbage should be collected as soon as possible, on the other
hand frequent garbage collections cost power [4].

The garbage collection problem in memory-constrained environments has
already been identified and garbage collectors tailored specifically to these en-
vironments were presented [12]. While the new collector algorithm did decrease
pause times giving the end user better interactivity, results on decreasing the
total collection time were mixed and in average the total collection time was not
significantly lower than the widely used mark-and-compact algorithm.

This paper presents a way to introduce explicit memory deallocation into
Java environments while keeping the attractive garbage-collected heap model.
Similar approach was presented in [13] which proposes deallocation with explicit
instructions by regions. Allocation of individual objects to regions is problem-
atic, however, and the approach was developed to replace garbage collection in



real-time systems. Their results indicate that in some rare cases their explicit
deallocation scheme can be as good as garbage collection.

The mechanism proposed in this paper is based on a JVM extension that
allows Java code to clean up garbage objects and escape analysis techniques
to insert the explicit garbage cleanup code into Java bytecode. The explicit
deallocation works in conjunction with the garbage collection improving the GC
performance. Prototype of the approach was implemented using the Jikes RVM
and the effectiveness is demonstrated on a series of benchmarks.

2 JVM support for explicit deallocation

When the object goes out of scope, no more references point to the object and
the garbage collector can collect it. As we will see in the next section, even
in the presence of explicit deallocation there are cases when it is theoretically
impossible to say what is the point in the program when the object ceases to
exist. For example if the object reference is passed to another thread, the point
of time when the object becomes garbage may depend on thread scheduling and
therefore its deallocation site will depend on the scheduling of the original and
the second thread. In many cases, however, there is a clear deallocation site.

There are many deallocation strategies available. It is possible to allocate
objects on the stack and these objects are automatically cleaned up when the
method exits and the method stack frame ceases to exist [5],[6],[7]. Stack-based
deallocation, however, cannot handle the case when the deallocation site is not
in the same method as the object creation site. Take the following example:

public Object returnObject() {

...

Object o = new Object(); // site 1

...

return o;

}

...

Object o2 = returnObject();

...

o2 = null;

// Object allocated at site 1

//can be deallocated

...

In addition, stack-based deallocation assumes that the Java bytecode is in-
deed compiled into native code which is not always true. For example even very
advanced adaptive JIT compilers often have a first pass when the Java bytecode
is interpreted in order to save bytecode compilation time and compiled native
code storage space for rarely used program sections.

This paper proposes an alternative approach: a new Java bytecode instruction
is introduced. Specification of this instruction is the following:



Name delete
Operation Delete an object from the heap
Operand stack ..., objectref ⇒ ...
Description The instruction takes objectref from the operand stack and ma-

nipulates the heap state so that the space occupied by the object pointed by
objectref is considered free. This space can be used to allocate a new object
and garbage collector can handle this place as free. If there is finalizer code
associated to the object, it is executed. If the finalizer raises an exception, the
object remains on the heap and the program calling the delete instruction
continues executing.

The instruction removes just one object from the heap. If it is known that
objects referenced by the deleted object are not referenced by any other objects,
those can also be freed. As the delete instruction runs the finalizer, the finalizer
can be used equivalently to the destructor of non-garbage collected languages
and the finalizer can contain explicit deallocation instructions for the objects
referenced by the the explicitly deleted object.

It is important to mention that the deletion may cause inconsistency in the
heap. If the deleted object is still pointed to by a reference variable, the JVM
behaviour will become unpredictable and JVM crash can occur. The new in-
struction is therefore “strange” compared to other Java bytecode instructions in
the sense that it is not safe; incorrect usage of the instruction can cause JVM
malfunction.

Bytecode safety is a very attractive feature of Java therefore it must be
guaranteed that the delete instruction is used only by trusted code. Java code
shipped with the device (e.g. platform code or system libraries) or code signed by
trusted principals are good candidates for allowing delete instructions in them.
Before any Java code is installed on the system, a simple filter can detect the
presence of delete instructions and reject code that is not privileged enough
to contain that instruction. Alternatively, this mechanism could be placed into
Java classloaders; this solution would yield simpler deployment architecture and
increased security (no way to tamper with downloaded code that already passed
the delete filter) but slower classloading.

3 Automatic placement of explicit deallocation
information

The delete instruction doesn’t have corresponding Java structure so Java pro-
grammers cannot directly take benefit of this mechanism. Explicit deallocation
is not proposed to be used directly from Java programs or from any other pro-
gramming language compiled to Java bytecode. Instead, an algorithm is pro-
posed that takes Java bytecode and places the delete instructions and necessary
support code at appropriate locations.

The algorithm presented here is in many way similar to other dataflow algo-
rithms presented e.g. in [6]. The core element of these algorithms is a dataflow



analyser that tracks object generation and assignments of object references. Us-
ing dataflow analysis, in many cases it is possible to determine that an object’s
lifetime is restricted to a certain region of the program. If the dataflow analyser
cannot find such a region, the object is said to be escaped. Escaped objects can
really be long-living objects or can be objects where the dataflow analyser could
not figure out the lifetime of the object. In the presence of asynchronous mech-
anisms (e.g. threads) it is always possible to create structures such that static
analysis is not able to calculate the lifetime of the object. Garbage collection is
therefore not eliminated, but the load on the garbage collector can be reduced.
This means less garbage collection overhead which yields better performance.

Our dataflow algorithm is based on the heuristic observation that a lot of
objects with limited lifetime are created during the execution of an average Java
program and this limited lifetime is not necessarily short. As composite data
types are always allocated on the heap in Java and Java class library itself is
nicely object-oriented (the standard class library itself creates quite a lot of
objects with limited lifetime) the assumption was that significant gain could be
realized if these objects were eliminated by explicit deallocation. Based on the
assumption that there exists significant amount of objects with limited lifetime
which are used for temporary data storage, the following simplifications were
made.

– Assignments to global variables (class or instance variables) are not tracked.
If an object is assigned to a global variable, it is considered escaped.

– Method summary is extremely simplified. Summary about a method is able
to describe only if the object passed to the method as invocation parameter
may or may not escape. Escape information about the return value is also
available, in this case the escape status means whether there is a possibility
that the object to escapes (e.g. stored the reference in a global variable) due
to processing in the method. The summary is also able to express which, if
any, invocation parameters may be returned by the method.

Beside simplifications, the dataflow algorithm extends previous algorithms
with the notion of stack deallocation. The term is used for explicitly deallocating
an object whose reference is never saved in any variable (local or global). Let’s
see the following example.

String a = "b";

String b = "a" + a;

This fragment creates a temporary StringBuffer object which is used to ap-
pend the two strings and the content of the StringBuffer is eventually copied
back to an immutable String object. Finally the StringBuffer can be garbage-
collected. The StringBuffer reference exists solely on the operand stack and is
never saved to any variable.

The difference between stack deallocation and deallocation of objects whose
reference was stored in local variables exists at bytecode level. If the escape
analyser uses a data abstraction other than bytecode (e.g. is built into the JIT



compiler) this difference may not exist. As it is pointed out later in this section,
escape analysis in the presence of a code using conditional branches heavily is
very time-consuming operation. This makes off-line escape analysis attractive.
Off-line escape analysis must rely only on bytecode because in this case no
assumptions can be made on the executing JVM’s internal architecture.

For the purpose of this document the following terms are defined.

Definition 1. Global variable exists independently of a method’s scope. Local
variable, however, is allocated and deallocated automatically when a method’s
scope is entered or left. Global variables are instance or class fields of objects.

Definition 2. Object representation is a representation of an object allocation
site. Every object generated at this site is represented by the same object repre-
sentation. Object representation describes the allocation site, escape status and
the references that objects generated at this site have. (where do they point to,
who points to them) An object representation’s escape status represents whether
there is possibility that any object generated at this site escapes.

Definition 3. A reference graph is a directed graph RG = (Nor

⋃
Nlv, Eor

⋃
Eur

⋃
Enr),

where

– Nor is a set of nodes in the graph that stand for object representations.
– Nlv is a set of nodes in the graph representing local variables.
– Eor is a set of edges in the graph that point to object representations.
– Eur is a set of edges in the graph representing untracked object references.

The allocation site of an untracked object reference is unknown.
– Enr is a set of edges in the graph representing non-reference type values.

LV1

LV2

LV3

OR1

LV4

OR2

OR3

OR1_1

OR1_2

OR2_1

OR2_2

UR1

NR1

UR1 represents a reference to an untracked object

NR1 represents a non−reference (e.g integer) value

escaped

escaped

Fig. 1. Example reference graph

Figure 1 illustrates an example reference graph.

Definition 4. Control flow graph (CFG) is a directed graph CFG = (Ninst

⋃
Ncond, Eseq),

where



– Ninst is a set of nodes representing Java bytecode instructions that may not
result in conditional branches (e.g. arithmetic instructions, unconditional
branches). Instructions belonging to this set do not cause “forks” in the con-
trol flow.

– Ncond is a set of nodes representing Java bytecode instructions that may re-
sult in conditional branches (e.g. conditional jump statements, switch state-
ments). These instructions create “forks” in the control flow.

– Eseq represents the execution order of the instructions.

CFGM represents the set of instructions where every instruction of method M
is part of CFGM .

Definition 5. Deallocation set DSM for method M is a set of tuples tM =
{cfgM , nor}, where

– cfgM ∈ CFGM
– nor ∈ Nor is the object representation of the object to be deallocated.

Definition 6. Union of reference graphs is an operation when RG1 and RG2

are unified and new RGo is produced. The unification is done is such a way that

– every node present in RG1 and RG2 is also present in RGo
– every edge pointing to any node is also present in RGo. If the union creates

more than 1 outbound edges for a LV node, an intermediate OR node will be
created, the LV node points to this intermediate node and the intermediate
node points to the nodes that would have been pointed by the LV node after
the union. 1

– nodes and edges present in both graphs are present only once in RGo
– if any node has escaped status in either RG1 or RG2, the node will have

escaped status in RGo

Figure 2 illustrates the reference graph union concept.

Definition 7. Summary of a method M captures the escape behaviour of the
method regarding its parameters and return value. If a parameter or the return
value is marked as “escaping” in the summary then the parameter or return
object may escape due to processing in the method.

The unit of processing in our dataflow algorithm is the method. The algo-
rithm iterates over the instructions of the method following every path of the
CFG and simulates the effects of each instruction on the representation graph
and on the operand stack. The methods are visited according to the CFG -
methods at the end of the call chain are analysed first. The exact process is the
following.

1 Note that these intermediate nodes are related to the way the algorithm was imple-
mented and are not strictly necessary in every implementation. Our implementation
allows one reference variable to point to only one node.



LV1

LV2

OR1
OR2

OR3

escaped

RG1

LV3

OR1

OR2

OR4

LV1

LV2 RG2

LV1

LV2

LV3 OR4

OR1 OR2

OR3

escaped

RGO
OR5

OR5 is an intermediate node which is
created because LV nodes can have only
one outbound edge.

Fig. 2. Union of reference graphs. RGO is produced as union of RG1 and RG2

– Set up the initial reference graph by analysing the input parameters and
summary. Each input parameter to the method will be assigned an object
representation. The original escape status of these object representations are
set according to the method summary.

– Mark each branch instruction of the method as unvisited.
– Set up an empty operand stack. This operand stack is used by the dataflow

analyser to simulate the real run-time JVM operand stack.
– Start iterating over the instructions in the method starting with the first

instruction of the method and proceeding according to the control flow.
Simulate the effect of the instructions on the operand stack and on the
reference graph like the following:
• If the instruction works with scalar values (e.g. pushes a constant to

the stack or performs arithemtic operation) check whether the appropri-
ate levels of the operand stack contain non-reference type values then
consume and produce appropriate number of non-reference type values.
• If the instruction loads a reference from a local variable to the operand

stack, fetch the outbound edge from Nlv and copy that edge to the
operand stack. This means that the element of the operand stack will
point to the same object representation as the local variable (provided
that the edge was not of Eur or Enr type) and the object representation
will have an additional inbound edge.
• If the instruction consumes an operand stack value and that operand

stack value is an edge to an object representation, the object represen-
tation is examined whether it has any more inbound edges. If there is
none, explicit deallocation site is tentatively placed for nor at this in-
struction and the deallocation tuple is added to DSM . The deallocation
site is marked as stack deallocation site.
• If the instruction overwrites a local variable, the local variable is checked

and if it contains an edge to an object representation which has no



more inbound edge, an explicit deallocation site is tentatively placed for
nor at this instruction. The deallocation site is marked as local variable
deallocation site.

• The instruction is marked as deallocation site only if all the execution
paths create the same type of deallocation with the same parameters. If it
is possible to reach the instruction so that no deallocation site is created
or the deallocation site is created with different type or parameters than
the existing site at that location then no deallocation site will be created
there.

• In case of array manipulation instructions, an interim object is created
to represent the array and references stored in the array are added to
the interim object.

• If the instruction is a method call, the summary for the target method
is fetched and the parameter and return value object representations
are set according to the summary. If the summary marks parameters
and/or return value with non-escape status then parameters are normally
consumed and non-escaping object reference is created for the return
value. If the summary marks parameter or return value with escaping
status, the object representation of that parameter or return value will
also have escaping status.

• If a reference is stored to a global variable, mark the object representation
with escaping status.

• If the instruction belongs to the Ncond set, a fork is encountered in
CFGm. The analyser does an exhaustive traversal of all possible contexts
that an instruction is reachable from. Figure 3 illustrates this effect. If
the analyser finds that the branch target instruction was not yet analysed
from every possible context, one copy of the state of the analyser (branch
target location, data stack and current representation graph) is pushed
to the analysis stack for that branch target.

• If the analyser finds that the current instruction has been reached from
every possible context, the analysis finishes in this context. The state of
the analyser is pulled from the analysis stack, the union of the current
and the saved representation graph is calculated and the analysis contin-
ues at the location pulled from the stack. This means that the algorithm
analyses each code region as many times as it is accessible from all the
execution paths along every conditional instruction in the method.

• If the instruction is a return instruction, all local variables that can be
deallocated (variable has an edge to non-escaping object representation)
are marked for explicit deallocation. The saved analyser state is pulled
from the analysis stack and the processing continues as described at the
previous item.

• If an attempt is made to pull saved analyser state and the analyser stack
is empty, the analysis of this method finishes.

– Calculate the summary by analysing the escape status of invocation param-
eters and the return value.



Reachable from 3 contexts

Start

Stop

Reachable from 2 contexts

Reachable from 2 contexts

Reachable from 1 context

Reachable from 1 context

Start

Stop

Each branch is reachable
from 2 contexts

Reachable from 6 contexts

Reachable from 2 contexts

Fig. 3. Effect of conditional instructions on the number of analysis passes of a code
segment

After the analysis of the methods finishes, the Java classes are instrumented
according to the DSM sets. Instructions are inserted into the Java code for each
member of the DSM set. Stack deallocations and local variable deallocations are
handled slightly differently. In case of stack deallocation, a copy of the object’s
reference is saved in a local variable created by the analyser at the object creation
site and this local variable is used at the deallocation site to supply the reference
to the delete instruction.

new java/lang/Object

dup ;Inserted by dataflow analyser

astore_2 ;Inserted by dataflow analyser

;local variable #2 is created by the analyser

dup

invokespecial java/lang/Object/<init>()V

...

... ;Object deallocation site

aload_2 ;Inserted by dataflow analyser

;local variable #2 must not point

;to the object after delete!

aconst_null ;Inserted by dataflow analyser

astore_2 ;Inserted by dataflow analyser

;Consumes last reference and deallocates

delete ;Inserted by dataflow analyser

In case of local variable deallocation there is no need to save the reference
at the object creation site, it can be saved right before the local variable is
overwritten. The content of the local variable is saved to another local variable
created by the analyser and after the local variable value is overwritten, the
original value is used as delete instruction parameter.

;Local variable #1 will be set to null

aconst_null

aload_1 ;Inserted by dataflow analyser

;local variable #3 is created by the analyser



astore_3 ;Inserted by dataflow analyser

;Local variable is overwritten

astore_1

aload_3 ;Inserted by dataflow analyser

aconst_null ;Inserted by dataflow analyser

astore_3 ;Inserted by dataflow analyser

;Consumes last reference and deallocates

delete ;Inserted by dataflow analyser

It must be noted that the dataflow analyser’s execution time can be very
significant, especially in the presence of complex conditional branch structure of
the target program. Therefore it is not feasible to build the dataflow analyser
into the JVM’s classloader, class verifier or JIT compiler engine. The proposed
setup is to instrument the target program before it is sent to the software distri-
bution systems and sign the instrumented program so that the executing JVM
recognizes that delete instructions in this program are safe to execute.

4 Implementation and benchmark results

The implementation consists of two parts: the modified JVM and the dataflow
analyser. The base JVM in which the delete mechanism was implemented is the
Jikes Research Virtual Machine (JikesRVM) [10]. Although JikesRVM is tar-
geted mainly to server environments, the fact that it is written mostly in Java
makes it easier to implement experimental features and the speed of prototyping
was important factor during the selection. JikesRVM has a very flexible memory
management subsystem (MMtk) that allows implementation of wide variety of
garbage collectors [11]. Although MMtk provides a number of garbage collectors,
the explicit deallocation support was only implemented in the mark-and-sweep
collector (MS) because MS collector is popular in memory-constrained environ-
ments. Running finalizer on explicitly deallocated objects was not implemented
in the prototype. The prototype is based on version 2.3.2 of JikesRVM and the
target platform is x86 Linux. The Base compiler was used.

The dataflow analyser was implemented on top of the Jasmin Java assembler2

which in turn is built on the JAS bytecode generator toolkit. The augmented
Jasmin assembler reads the Java “assembly” source text, performs the dataflow
analysis on the class read and writes a Java assembly file that already contains
explicit deallocation instructions. Based on an option, the modified Jasmin also
generates Java class file. The method call chain traversal is not implemented
therefore this prototype is not able to traverse the CFG following the call chain.
The updated summary is saved, however. Multiple execution of the dataflow tool
yields same results as if the method-to-method CFG traversal were implemented.
The tool is also able to work on class file hierarchies; in this case BCEL’s3

JasminVisitor is used to decompile each class file into Jasmin source format
which is then processed by the dataflow analyser.

2 http://jasmin.sourceforge.net/
3 http://jakarta.apache.org/bcel



The prototype (the modified Jikes RVM, the dataflow analyser implementa-
tion and the benchmark programs) can be downloaded from http://javasite.bme.hu/
∼paller/ common/ expdealloc.tar.gz.

Three applications were chosen for benchmarks.

– A small application built on the nanoXML 2.2.1 parser4 The application
requests nanoXML/Java to parse an XML file (XML file length: about 30
kBytes).

– The Health benchmark from the JOlden 0.1 benchmark suite 5.
– A minimal Java webserver implementation with a simple Java servlet based

on the Acme Java-based webserver implementation6.

The Health benchmark was criticized in [14]. It was pointed out that Health
can be implemented in more optimal way. These possible optimizations, however,
don’t affect the memory management of the benchmark so Health is appropriate
for our measurements.

Note that the benchmark selection considered applications of practical use
more important than the usual benchmarks, e.g. specJVM98.

The benchmarks were run with heap size restricted with the -Xmx JVM
switch and several characteristics of the program execution were measured. These
are:

– Maximum heap size (maxheap). Maximum size of the heap (including garbage
objects) in bytes during the execution.

– The number of garbage collection passes during the execution of the bench-
mark (gc).

– The percentage of time spent on garbage collection during the execution of
the benchmark (gc%).

– The total execution time of the benchmark (pure Java execution time ex-
cluding JVM load and setup time) (exec).

The first group of columns in the tables show the results without explicit
deallocation, the second group of columns show the results with explicit deallo-
cation. The columns showing results with explicit deallocation are marked with
(e) suffix (e.g. gc(e)). The gain column in the table shows the gain in execution
time over the non-annotated version in %.

The standard Java libraries were not annotated with explicit deallocation
instructions although this is an attractive option.

The test machine is a 600MHz Intel Pentium II machine and was equipped
with 256MByte RAM. The operating system was based on Linux 2.4.20 ker-
nel. Beside the -Xmx switch, no other command-line switch was used to launch
JikesRVM.

Table 1 shows the nanoXML benchmark results in case of original benchmark
and the classes annotated with explicit deallocation instructions. The dataflow

4 http://nanoxml.sourceforge.net/orig/.
5 http://www.sable.mcgill.ca/∼bdufou1/ashes2/
6 http://www.acme.com/java/software/Package-Acme.Serve.html



analyser placed 59 local variable deallocations and 15 stack deallocations. The
original class file size is 82996 bytes, the version with explicit deallocation is
83188 bytes. The explicit deallocation instructions freed 3263436 bytes during
the execution.

Table 1. nanoXML benchmark results

-Xmx maxheap gc gc% exec gc(e) gc%(e) exec(e) gain

20m 11437596 1 36.22 6.06 0 0 4.11 32

17m 8704324 1 36.00 6.02 1 35.86 6.09 -1.1

15m 6950060 2 52.75 8.24 1 35.23 6.13 25

13m 5144628 3 62.24 10.37 2 52.39 8.23 20.6

10m 2757520 8 81.29 21.08 6 76.24 16.83 20.1

The Health benchmark was run with -l 6 -t 30 -s 222 command-line switches.
Table 2 shows the benchmark results. The dataflow analyser placed 6 local vari-
able deallocations and explicit deallocation freed 1613360 bytes. The original
class file size is 11690 bytes, the version with explicit deallocation is 11724 bytes.
The advantage of garbage collected heap described by [1] can be observed nicely:
as long as there is enough memory, explicit freeing is a disadvantage because
there is place for garbage in the memory and eager reclamation of the garbage
memory is just a performance overhead. As soon as the memory budget gets
tighter, there is more and more time spent on collecting the garbage so eager
memory reclamation pays off.

Table 2. Health benchmark results

-Xmx maxheap gc gc% exec gc(e) gc%(e) exec(e) gain

20m 8142016 0 0 5.92 0 0 6.82 -15

12m 4724184 2 43.36 10.52 1 23.40 10.16 3

11m 3829704 2 44.58 11.14 2 39.68 11.40 -2

10m 3101584 4 60.03 14.92 3 49.35 13.58 9

9m 2409632 7 72.36 21.54 5 61.78 17.92 16

The Acme benchmark is a Java-based webserver with a very simple servlet
serving dynamic content. The server serves 100 HTTP requests before it is ter-
minated. The dataflow analyser was able to insert only 2 local variable deallo-
cations into the main Acme engine that produced marginal gains. By analysing
the code the reason was found: Acme stores its temporary variables in object
fields instead of local variables which goes against the heuristic employed by
the dataflow analyser. 23 explicit deallocation sites were found and deallocation
code fragments were placed by hand. The original class file size is 109020 bytes,
the version with explicit deallocation is 109497 bytes. With these modifications,



explicit deallocation freed a total of 2400 objects with a total size of 565600 bytes
during the execution of the benchmark. Table 3 show the benchmark results.

Table 3. Acme benchmark results

-Xmx maxheap gc gc% exec gc(e) gc%(e) exec(e) gain

10m 2717960 2 51.80 9.42 2 39.04 10.89 -13.4

9m 2181032 4 65.48 16.10 3 52.77 13.9 13.6

8m 1613640 9 83.61 27.64 8 77.84 25.61 7

The following table shows the time needed for certain reconfiguration tasks.
The data includes the entire

5 Conclusion and outlook

This paper aimed to prove that explicit deallocation has significance in memory-
constrained Java environments and a simple implementation of the idea was
presented. The consequences of Appel’s analysis were demonstrated; as the heap
gets constrained, the garbage-collected system becomes slower and slower com-
pared to heap management featuring explicit deallocation. This makes attractive
to introduce this mechanism in memory-constrained systems.

The paper demonstrated that in many cases a simple dataflow analyser is
able to place explicit memory deallocation sites efficiently. If the heuristic of the
analyser does not apply well to the code causing performance problems, explicit
deallocation sites can be placed by hand. This is a tedious work but can be
important in case of frequently used code fragments. In both cases, the code
containing explicit deallocation can crash the JVM therefore this solution can
be used only for trusted code. The implementation proposed in this paper in-
troduced the unsafe “delete” instruction and it is very important to ensure the
safe use of this instruction. Standard Java libraries and built-in services writ-
ten in Java can benefit from explicit deallocation. The automatic placement of
explicit deallocation instructions can be very time-consuming because the ex-
haustive traversal of the CFG can take long time in the presence of complex
control flow structure. It is therefore proposed to place the explicit deallocation
instructions before the program is distributed to the executing JVMs. This ap-
proach also allows coexistence of JVMs with and without explicit deallocation
support because the software version with explicit deallocation instructions will
be distributed only to JVMs that support it.

6 Acknowledgements

I thank for the valuable help I received from the experts on the Jikes RVM
mailing list when I implemented the explicit deallocation feature in the Jikes
RVM. I also thank for the reviewers’ comments that improved this paper’s quality
significantly.



References

1. Appel, A.W., Garbage Collection Can Be Faster Than Stack Allocation, Informa-
tion Processing Letters, 25(4):275–279, June 1987

2. Miller, J.S., Rozas, G.J, Garbage Collection is Fast, but a Stack is Faster, Tech-
nical Report: AIM-1462, 1994

3. Phipps, G., Comparing Observed Bug and Productivity Rates for Java and C++,
Software - Practice and Experience, 29(4), 345-358, 1999

4. Chen, G., Shetty, R., Kandemir, M., Vijaykrishnan, N., Irwin, M.J., Wol-
czko M., Tuning Garbage Collection in an Embedded Java Environment, Proceedings
of the Eighth International Symposium on High-Performance Computer Architecture
(HPCA’02), Page 92.

5. Whaley, J.,Rinard, M., Compositional Pointer and Escape Analysis for Java
Programs, Proceedings of the 14th Annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications, Denver, November
1999

6. Choi, J-D., Gupta, M., Serrano, M.J., Sreedhar, V.C., Midkiff S.P., Escape
Analysis for Java, Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pages 1-19, 1999

7. Blanchet, B., Escape analysis for object-oriented languages: application to Java,
Proceedings of the 14th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, Denver, November 1999

8. Soman, S., Krintz, Ch., Bacon, D.F. Dynamic Selection of Application-Specific
Garbage Collectors, The 2004 International Symposium on Memory Management,
Vancouver, Canada, 2004

9. Efficient MIDP programming, Version 1.1; March 19, 2004, Forum Nokia,
http://www.forum.nokia.com

10. Alpern, B., Cocchi, A., Lieber, D., Mergen, M., Sarkar, V., Jalapeno - a
Compiler-supported Java Virtual Machine for Servers Workshop on Compiler Support
for Software System (WCSSS 99), Atlanta, May 1999

11. Blackburn, S.,Cheng, P., McKinley, K., Oil and Water: High Performance
Garbage Collection in Java with MMTk, ICSE 2004, 26th International Conference
on Software Engineering Edinburgh, Scotland, May 2004.

12. Sachindran, N., Moss, J.B., Berger, E., MC2: High-Performance Garbage Col-
lection for Memory-Constrained Environments, ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA) Vancouver, British
Columbia, Canada, October 2004.

13. Sigmund Cherem and Radu Rugina, Region analysis and transformation for
Java programs, Proceedings of the 4th international symposium on Memory manage-
ment, Vancouver, 2004

14. Craig B. Zilles, Benchmark health considered harmful, ACM SIGARCH Com-
puter Architecture, Volume 29, Issue 3

15. JSR 1: Real-time Specification for Java,




