

The Garbage Collection problem

e Java is more productive language than e.g. (++
e One key enabler is garbage-collected heap

e It was shown in Appel's 1987 paper that garbage collection speed can be
comparable to explicit memory allocation/deallocation if the available memory
is large enough and appropriate algorithms are used (copying collectors)

e The ratio between the active cells and the total cell number for the break-even
point depends on a lot of factors. In Appel's paper the example parameters vield 7
as break-even ratio (7 times more memory than the size of active cells)

e Garbage collection costs!

e It costs memory so that the break-even ratio can be achieved (this assumes a
copying collector)

e It costs execution time if there is less memory available than required by the
break-even conditions

* Not a problem in today's desktops and servers: just throw in more memory

Gabor Paller: Increasing Java Performance in Memory-Constrained Environments Using
Explicit Memory Deallocation

Garbage collection and mobile systems

e Mobile systems are memory-constrained

e Because of cost, size, power consumption ...

e These factors are expected to improve but the constrained nature remains
e Java is an ideal language for mobile systems

e Because it bridges very different mobile terminal architectures
e Garbage collection problem detected

e Be memory-conscious (frequently recommended pattern in CLDC/MIDP application
design)

e Try to apply explicit memory allocation/deallocation while preserving the
attractiveness of garbage-collected heap

Gabor Paller: Increasing Java Performance in Memory-Constrained Environments Using
Explicit Memory Deallocation

Related work

e Dataflow analysis was proposed for Java-native (ahead-of-time, AOT) compilers
(Blanchet, 1999, Whaley et al., 1999, Choi et al., 1999)

e These approaches assume stack-based allocation of certain objects. When the
method's scope is left, the content of the stack level is deallocated. The dataflow
analyser finds out which objects can be allocated on the stack.

e Explicit region-based deallocation was proposed (Cherem, Rugina, 2004)

e This allocates objects into regions and explicitly frees regions. This grouping is
problematic, however, therefore the authors propose this method to replace
garbage collection.

e Real-time Java (JSR 1)

e Requires the programmer to declare deallocation explicitly - not an option for
mainstream Java programmers

Gabor Paller: Increasing Java Performance in Memory-Constrained Environments Using
Explicit Memory Deallocation

JVM support for explicit deallocation

e We propose that bytecode contain explicit information when and what is
deallocated.

e This allows to handle the situation when the deallocation site is in different
method than the allocation site (stack-based deallocation cannot handle this
case)

e The method prototyped uses a new bytecode instruction but adding meta-
information to class files could also be used.

* The explicit deallocation information is added by an off-line dataflow analyser
(dataflow analysis in the presence of complex branching can be very time-
consuming)

e This explicit deallocation information can crash the JVM if used maliciously, e.qg.
if an active object is deallocated, JVM crash can occur

e Explicit deallocation is allowed only in trusted code, e.g. system libraries. This can be
guaranteed by e.g. signature-based policy system. The code can be verified for the
presence of explicit deallocation information when the code is installed on the
system or when the classloader loads it.

Gabor Paller: Increasing Java Performance in Memory-Constrained Environments Using
Explicit Memory Deallocation

Our implementation: de/ete bytecode instruction

e Name: delete
e Operation: Delete an object from the heap
e Operand stack: ..., objectref - ...

e Description: The instruction takes objectref from the operand stack and
manipulates the heap state so that the space occupied by the object pointed by
objectref is considered free. If there is finalizer code associated to the object, it
is executed. This space can be used to allocate a new object and garbage
collector can handle this place as free.

e Unlike other instructions, delete is not safe. It should not be used by developers
directly but a dataflow analyser is employed to place delete instructions into
the bytecode.

Gabor Paller: Increasing Java Performance in Memory-Constrained Environments Using
Explicit Memory Deallocation

Dataflow algorithm to place de/ete instructions

e dataflow algorithm tracks object generation and assignments of object
references.

e Using dataflow analysis, in many cases it is possible to determine that an
object’s lifetime is restricted to a certain region of the program.

e If the dataflow analyser cannot find such a region, the object is said to be
escaped. Escaped objects can really be long-living objects or can be objects
where the dataflow analyser could not figure out the lifetime of the object.

e In the presence of asynchronous mechanisms (e.g. threads) it is always
possible to create structures when static analysis is not able to calculate the
lifetime of the object.

e Garbage collection is therefore not eliminated, but the load on the garbage
collector can be reduced. This means less garbage collection overhead which vields
better performance.

Gabor Paller: Increasing Java Performance in Memory-Constrained Environments Using
Explicit Memory Deallocation

Simplifications

e Qur dataflow algorithm is based on the heuristic observation that a lot of
temporary objects are created during the execution of an average Java
program and these temporary objects are not necessarily short-lived.

e As composite data types are always allocated on the heap in Java and Java
class library itself is nicely object-oriented (the standard class library itself
creates quite a lot of temporary objects) the assumption was that significant
gain could be realized if these temporary objects were eliminated by explicit
deallocation.

e Simplifications

e Assignments to global variables (class or instance variables) are not tracked. If an
object is assigned to a global variable, it is considered escaped.

e Method summary is extremely simplified. Summary about a method is able to
describe only if the object passed to the method as invocation parameter and value
returned by the method escapes.

Gabor Paller: Increasing Java Performance in Memory-Constrained Environments Using
Explicit Memory Deallocation

Object representation and reference graph

* Object representation: representation of an object allocation site. Every object
instance generated at this site is represented by the same object
representation. Object representation describes the allocation site, escape
status and the references that objects generated at this site have. (where do
they point to, who points to them) An object representation's escape status

represents whether there is possibility that any object generated at this site
escapes.

* Reference graph: shows relationships of object representations

@ ORL_1 OR2_1
exceaped

GRL 2 OR2_2
exceped

. URI1 represents a reference to an untracked object
NR1 represents a non—reference (e.g integer) valoe

Gabor Paller: Increasing Java Performance in Memory-Constrained Environments Using
Explicit Memory Deallocation

Deallocation set

* Deallocation set: location and object representation of a possible explicit
deallocation site

e The dataflow analyser "executes" the bytecode simulating the effects of
bytecode instructions on the operand stack and reference graph.

e Some bytecode instructions (e.g. astore) have side-effect that objects can be
candidate for garbage collection. E.qg. if astore overwrites a local variable and
that local variable is associated with an object representation that had only this
local variable as inbound edge, we can place a tentative deallocation set entry
at this location.

Gabor Paller: Increasing Java Performance in Memory-Constrained Environments Using
Explicit Memory Deallocation

Control flow

e The control flow structure of the analysed program complicates things
significantly.

e Integer o = null;
Integer 01 = null;
if(cond)
o0 = new Integer(1);
else {// !cond
0 = new Integer(2);
o0l =o0;
}
o = null; // Don't deallocate, 01 may also point to the object if lcond path is
taken!

Gabor Paller: Increasing Java Performance in Memory-Constrained Environments Using
Explicit Memory Deallocation

Complexity of control flow

e To handle control flow effects correctly, exhaustive traversal of the control flow
graph is needed which may be very time-consuming.

Start Start
Q

Reachable from 1 context
—-_—

Reachable from 2 contexts

= Reachable from 2 contexts
==
Each branch is reachable
Reachable from 3 contexts from 2 contexts
- -

Reachable from 2 contexts
—_—

[\

Reachable from 6 contexts

—

Reachable from 1 context -
-

O Stop O Stop

Gabor Paller: Increasing Java Performance in Memory-Constrained Environments Using
Explicit Memory Deallocation

Dataflow analyser algorithm

e The algorithm analyses methods according to the execution flow

e This is needed so that method parameter and return value escape status can be considered at
invocation site.

e This is not implemented correctly in the prototype: worst-case situation is assumed if
previously un-analysed method is encountered (all parameters and return value escape) but
the method summary is saved. During the next execution the method summary from the
previous execution will be used. This way the analysis result converges to the correct solution
by executing the tool repeatedly.

e Bytecode instructions are taken in execution order and their effect are simulated on the
reference graph and the operand stack

* Deallocation set is updated after each instruction. If two traversal of the control flow
don't vield the same deallocation set (e.g. two branches of a conditional branch modify
the reference graph in a way that one branch creates deallocation entry and the other
doesn't) the deallocation entry is removed. The deallocation entry survives only if every
possible path vields the same entry.

e Every execution path is traversed exhaustively.

Gabor Paller: Increasing Java Performance in Memory-Constrained Environments Using
Explicit Memory Deallocation

Annotation

e Eventually the Java bytecode is modified according to the deallocation set

e E.g. deallocation of a stack item (reference which is never saved in any variable)
new java/lang/Object
dup ;Inserted by dataflow analyser
astore_?2 :local variable #2 is created by the analyser
dup
invokespecial java/lang/Object/<init>()V

:0Object deallocation site

aload 2 :local variable #2 must not point to the object after delete!
aconst_null

astore_ 2

:Consumes last reference and deallocates

delete

Gabor Paller: Increasing Java Performance in Memory-Constrained Environments Using
Explicit Memory Deallocation

Implementation

e Prototype implemented on top of JikesRVM research virtual machine and some
open-source programs.

e Download the implementation and benchmarks from
http://javasite.bme.hu/~paller/common/expdealloc.tar.qz

* Three benchmarks were executed with explicit deallocation and without
* Reference garbage collector is mark-and-sweep

e Mark-and-sweep is slower than the most advanced collectors but deployed
extensively in mobile devices

 JikesRVM generational mark&sweep cannot be used as explicit allocation prototype
base because it uses bump pointer allocator for the nursery - no way to deallocate
from a bump pointer collector

Gabor Paller: Increasing Java Performance in Memory-Constrained Environments Using
Explicit Memory Deallocation

Results

e When there is enough memory, explicit deallocation is not an advantage. There
are cases when it is even a disadvantage because garbage-collected heap is
more compact and garbage collector concentrates the allocation/deallocation
operations into one transaction - allocation/deallocation setup phase is done
only once.

e As the memory is squeezed, up to 30% performance gain is realized

e Note that with low memory, garbage collector can easily eat up 70% of
execution time!

e Only the benchmark was instrumented, not the Java class library (JikesRVM
precompiles the standard class libraries into binary form). The standard class
library has a lot of promising deallocation sites.

Gabor Paller: Increasing Java Performance in Memory-Constrained Environments Using
Explicit Memory Deallocation

Conclusions

e Garbage collection is a safe and mature technology if its extra memory
requirement can be satisfied

e If not, significant performance penalty may be caused by garbage collection
* This is often the case in mobile systems. Solutions:

e Memory-conscious programming (reuse objects)
e Explicit deallocation
e Manual - productivity advantage of garbage collection disappears
e Automatic - hard to do precisely but even simple analysers can vield good results

e Automatic explicit deallocation: can be very time-consuming if the control-flow
structure is complex. Hard to integrate into the JIT compiler.

e Off-line analysis was proposed and the prototype produced promising results.

Gabor Paller: Increasing Java Performance in Memory-Constrained Environments Using
Explicit Memory Deallocation

Questions?

Gabor Paller: Increasing Java Performance in Memory-Constrained Environments Using
Explicit Memory Deallocation

