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Chapter 1

Introduction

1.1 The aim of the Rafael project

Writing programs for the modern Digital Signal Processors (DSPs) intro-
duces difficult tasks for the software engineers because a painful tradeoff
exists between the computing power and the productivity/task complexity.
Unfortunately the existing and well-known higher level programming envi-
ronments (for example the "C” language) performs very poorly on the DSP
platforms because being general languages they cannot exploit the special
capabilites of the DSPs (circular buffers, parallel instructions and so on) or
avoiding pipeline effects. This can cause extremely high performance loss
(can be as much as 1000% compared to the assembly realization). Several
developments were made to improve C compilers on DSP platforms [Lear90]
but generally they use system or DSP dependent language extensions and
their performance is still not really convincing. So the developers have to
choose - writing the DSP code in assembly for achieving higher performance
thus lower hardware cost or using a high-level environment which will speed
up the development but decrease the efficiency of the DSP so that more ex-
pensive DSP-s must be chosen. It can even happen that the problem cannot
be solved on high level.

The other problem is the embarassing abundance of DSP architectures
and languages. One often faces the problem of porting existing results onto
other DSP platforms. If the code is written in assembly , this will be a
long and tiresome process. Some ”common language” is needed but not
having efficiently realizable high level platform this solution does not seem
to be promising. Nowadays the solution is sought toward optimized software
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libraries (like the SPOX math libraries) which try to combine the power of
assembly routines with the efficiency of C. SPOX [Spox88] does accelerate
the developing process but it is a fixed set of routines and if we extend it
(for example we need an arithmetic routine or new algorithm that the SPOX
cannot offer) we still have to write it in assembly loosing the portability.

Nowadays the parallel DSP is in the focus of attention, first of all be-
cause real-world DSP problems often require immense computing power. A
number of existing DSPs can be used for parallel realizations, some of them
has been designed especially for parallel computing for example Texas In-
strument’s TMS320C40, TMS320C80 and Analog Devices ADSP21060. The
task scheduling is an important part of the multiprocessor implementation of
DSP algorithms. This equally means partitioning the tasks among multiple
DSPs and scheduling the tasks on each DSP. Generally parallel programs
are scheduled by hand” in the existing parallel development systems which
is a difficult task and in the case of more complex tasks it cannot be done ef-
fectively. The other approach used frequently in the existing DSP operating
systems uses the well proven real-time operating system scheme (sometimes
timesliced scheduling is added) [Spox88, Virt93]. This scheme is based on
separate tasks and a task scheduler program which changes the tasks when
it is necessary. This task scheduler requires processing time.

Speciality of the DSP algorithm is that they don’t require much run-time
decisions. Very handy description form of these algorithm is the signal-flow
graph (SFG). We will give later a more thorough definition, here we only
mention that the signal-flow graph is a graphical description of an algorithm
in which computations are represented by graph nodes and dependencies
among the computations by graph branches. If we can cluster enough nodes
together that their dependency graph and execution time do not depend
on the input values, we can schedule in compile lime thus eliminating the
processor load of the dynamic scheduler.

An important, emerging feature of the DSP code generators whether
or not they support heterogeneous target systems. This requirement arises
because of the need of cost-effective design (using more expensive DSPs
only if we need and replacing less-loaded ones by cheaper processors) and
the new research area, the hardware-software co-design. Co-design means
that the software and hardware partitioning decisions are not fixed at an
early stage of development but the software and hardware design proceed in
parallel interacting with each other [Kala93]. A design software supporting
this technique should provide design model(s) which allow the separation of
software and hardware as late as possible. This technique has very important



1.1. THE AIM OF THE RAFAEL PROJECT 5

practical aspects now with the DSP-core libraries when the designer can use
an industry-standard DSP-core (for example the TMS320C20) on his or her
custom circuit.

As it is shown in the literature, more complex SFGs can be as difficult
to overview or debug as a program coded in a traditional way. Formal
languages are able to prove certain properties of their input programs so it
is a lucrative idea to use them for checking if there are semantic errors in
the SFG. The problem can be described in a formal language and the SFG
can be generated by the compiler of the formal language.

Thus, the DSP code generation problem is the following: we need a sys-
tem which is flexible enough to be adapted to several existing DSP platforms,
avoids the power loss of the high-level languages, solves the partitioning and
scheduling problems and in addition it is easy-to-use for the DSP algorithm
developer who is generally not a programmer. A proposition for this prob-
lem will be presented in this document describing Rafael, an intelligent code
generator based on signal flow graphs.

Rafael was designed as a small, flexible system which can run even on
very small computers (it is implemented under Microsoft Windows on IBM
PC compatible computers). It is a SFG compiler integrated into a simple
framework which allows DSP algorithms to be described in SFG form and
the compiler translates this description into program for a heterogeneous
multiprocessor hardware. The compiler distributes the SFG on the multi-
processor system, schedules the operations on each processor, creates the
communication scheme among the processors and generates executable as-
sembly source program for each processor. Rafael features a programmable
DSP database and code generator library so it can be adapted easily to any
processor. Small resources of the host computer do not allow us to com-
pete with the comprehensive features of existing SFG compilers hosted on
workstations but we hope to prove that Rafael can compete successfully on
several domains with those systems.

This document will be structured as follows :

o In the following part of Introduction we present the dataflow approach,
we deal shortly with its problems in the case of graphs containing
run-time decisions and we present the synchronous dataflow language
concept which allows us to generate consistent dataflow graphs with
simpler structure.

o In chapter 2 we will deal with the static scheduling problem, we present
the schedulers used in Rafael and the Rafael schedulers will be com-
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pared to other existing scheduler algorithms. As no existing scheduler
could produce acceptable performance on heterogeneous architectures,
a new scheduler class called Springplay has been devised. The chapter
deals with this algorithm in details.

o In chapter 3 the internal structure of Rafael will be described and it
will be compared to other existing SFG compilers.

1.2 The dataflow approach

1.2.1 Dataflow paradigm

The dataflow concept was proposed for its visuality which matches well to
certain problems (Digital Signal Processing, for example) and for its capa-
bility to reveal the available parallelism. In dataflow, program is represented
as directed graph where vertices represent computations (we will call them
operalions sometimes they are called actors [Lee87] in the literature) and
branches represent FIFO channels that queue data values. These branches
show the signal paths where a signal is simply an infinite stream of data and
each data token is called a sample. An operation is activated by a given
number of tokens on its inputs and it is fired (the computation assigned to
the operation is executed) then it produces tokens on its outputs. These
tokens may remain in the system for some time in the branch FIFOs before
they are consumed by other operation.

The earliest reference to the dataflow paradigm appears to be the com-
putation graphs of Karp and Miller [Karp66]. Each node has an associated
function for computing outputs from inputs and each branch has four asso-
clated integer values :

e A, the number of data words initially in the queue associated with
the branch,

e U,, the number of data words written into the queue when the node
connected to the input of the branch is executed,

e W,, the number of data words removed from the queue when the node
connected to the output of the branch is executed,

e T, a threshold giving the minimum queue length necessary for the
output node to execute. We require 7, > W,,.
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Karp and Miller prove that computation graphs with these properties
are determinate (the sequence of data values produced by each node does
not depend on the order of execution of the actors provided that the order
of execution is valid). They also dealt with problems of determining the size
of branch queues and the conditions that cause computations to terminate.
(Later it became more important to avoid the deadlocks in the dataflow
graphs so that computations can continue indefinitely). It is shown that
Karp and Miller computation graph model can be analyzed in the terms of
Petri nets [Buck93b].

The first papers about the usage of dataflow principles for the develope-
ment of computer architectures and programming languages were presented
by Dennis [Denn75]. Dennis applied the concepts of dataflow to computer
architectures thus creating the dataflow computer architecture. The first ma-
chine using this concept was built by Davis [Dav78]. There are two basic
types of dataflow computers: static and dynamic or tagged token dataflow
computers. The main difference between the two types is that in the static
version at most one token is allowed on every branch and the storage of
the edges is allocated at compile-time while in the dynamic version there
is no such limitation and the storage for the branch queue is allocated dy-
namically. The biggest problem of the pure dataflow model is the excessive
token matching and communication overhead between the operations. Hy-
brid models have been developed which group the operations into threads if
possible and execute them sequentially [Bic91].

A data flow graph can be large or fine grain one [Lee87]. Fine grain data
flow means that the operations are atomic computations like adders, multi-
pliers while large grain data flow (also called block diagrams) are composed
of more complex components like FFTs, filter blocks, etc. The granularity of
the graph determines the amount of parallelism that can be exploited. We
consider the basic operations undivisible and no effort is made to exploit the
parallelism inside an operation.

An operation can be also a graph of operations, in this case the graph is
hierarchical. By the most common approach hierarchical graphs are flattened
(the hierarchy is destroyed) [Buck94] so that maximal parallelism be present.
There are efforts, however, that the design system find the best granularity
by itself [Hoan93].
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1.2.2 Synchronous, boolean and integer-controlled dataflow

We call operations of the graph synchronous if they consume and produce
constant amount of tokens when fired and the number of the tokens is known
at compile time. (fig. 1.1) This restriction results in a big advantage that
the control flow is completely deterministic, thus the scheduling can be ac-
complished in compile time. This approach can be used to describe a big
number of DSP applications as they require no or little run-time decision
making. As it was pointed out in [Buck93a], however, “little” is not the
same as “none”. Therefore, synchronous data flow (SDF) is not capable of
describing important classes of problems. The traditional SDF approach was
extended by conditional operations like SWITCH and SELECT (fig. 1.2).
A dataflow graph containing these binary-controlled conditional operations
is called boolean dataflow graph (BDF').

bt |y
NN
| v

Adder before firing Adder after firing

ESlES
|t

Decimator beforefiring ~ Decimator after firing

Figure 1.1: Synchronous Dataflow operations

In [Lee87] the foundations of compiling SDFs into sequential programs
have been developed. The following questions can be asked about any
dataflow graph :

1. Do cyclic schedules exist ? A cyclic schedule is a sequences of actor
executions that return the graph to its original state.
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SELECT operator before and after firing
The value of the token on C input selects whether the tokens on A or B input will be emitted

SWITCH operator before and after firing
The value of the token on C input selects whether the next token on | will be emitted
on A or B outputs

Figure 1.2: Boolean Dataflow operations
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2. Does the graph have bounded cyclic schedule ? The schedule length
bound is important when generating code for a real-time environment.

3. Does the graph deadlock 7 In deadlock situation there is no operation
that can be executed.

4. Can the graph be scheduled to use bounded memory ?

A graph complying with these conditions is called consistent.

In [Lee87] algorithms are presented to answer all four questions for any
graphs. The problem is more complicated in the BDF case.

[Buck93b] introduces an enhanced version of BDF, the Integer-controlled
dataflow (IDF). BDF is extended by two new operations. The first is the
CASE-ENDCASE structure which is similar to the SWITCH-SELECT pair
with the distinction that the control branch consumes integer-valued tokens
and CASE-ENDCASE have more outputs and inputs. The second is the
REPEAT operation which repeatedly emits the input token and the num-
ber of repetitions is determined by the integer-valued token on the control
branch. As the BDF model is already Turing-equivalent, these new opera-
tions do not extend the number of the algorithms that can be modelled but
in several cases they simplify greatly the dataflow graph.

1.2.3 From dataflow graphs to directed acyclic precedence
graphs

Dataflow graphs are not directly suitable for scheduling. The scheduler al-
gorithm accepts a directed acyclic precedence graph (APEG) in which the
firing precedence constraints of the operations has already been determined.
As described in the previous section, the dataflow-precedence graph trans-
formation is the central question of the dataflow graph theory.

In figure 1.3 a dataflow graph and the corresponding APEG are depicted.

In the SDF case the problem is solved in [Lee87] by means of the balance
equations. By solving these equations one can determine the number of
operation firings so that the tokens consumed and produced on each branch
be equal. It is convenient to express these equations in matrix form. First
we define the topology matriz which has one row for each branch and one
column for each operation of the graph. A 7;; element of this matrix T’
determines how many tokens are added by operation ¢ to branch j. It 7, ;
is negative if the operation consumes from that branch. This matrix is the
following for the graph in figure 1.3.
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6 W

Figure 1.3: Dataflow graph and the corresponding APEG

r=[3 -2

Now we look for the repetition vector ¥ which solves the following equa-
tion:

=0 (1.1)

We find that all the non-trivial solutions have the form :

-

which means that operation A should be executed twice while operation
B three times to bring back the graph to its original state. The graph is
inconsistent if equation 1.1 has only trivial solution.

If we have the repetition counts for each operations, the simplest algo-
rithm to construct the APEG corresponding to the dataflow graph is a kind
of list scheduler [Buck93b]. We maintain a “schedulable operation list” and
we initialize this list at the beginning to the operations with no inputs or
having sufficient initial tokens at their inputs for firing. We then add them
one by one to the APEG with their data dependencies. Adding an operation
to the graph may enable others and they are inserted into the schedulable
operation list.

For example in the case of the graph in figure 1.3 operation A can be
placed twice at once. After this step instances of operation B are allowed
to be placed. As Bl consumes two only tokens of Al so dependency branch
must be added between A1l and B2 as well. B2 cannot be satisfied with the
remaining one token of Al so it will depend on A2 too. Then B3 can be
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placed which consumes only from A2. More systematic algorithm can be
found in [Lee87].

Whole thesises have been written on the questions of dataflow-APEG
transformations in more complex cases [Buck93b, Bhat94a]. In the BDF case
two important class of constructs, nested if-then-else and loops were shown to
be “well-behaved” in the sense that a BDF using only these macro-constructs
has always bounded memory requirement [Ga092]. In [Buck93a, Buck93b]
more indulgent conditions are presented for the BDF graph to be consis-
tent based on probabilistic analysis and clustering techniques. Probabilistic
analysis is shown to produce unreliable results and the essence of clustering
is to find basic constructs in the graph. As “well-behaved” graphs cover the
most important algorithm constructs, accepting the restrictions in [Ga092]
does not seem to cause many problems. [Buck93b] extended the probabilistic
techniques to IDF's as well.

1.2.4 Partitioning and scheduling

If the dataflow graph is static (it contains no runtime decision making) op-
erations can be assigned to processors and arranged on them statically so
runtime scheduler is not needed. It is such a big advantage that hybrid
solutions were presented that allows partial static scheduling even if there
are runtime decisions [Buck91]. The scheduling problem is shown to be NP-
complete [Sark89], heuristics are used to provide good-quality solutions in
acceptable time.

Two main approaches exist for the partitioning and scheduling task as
the problem is slightly different in the VLSI (called data path synthesis) and
the programmable DSP case. In the VLSI case we are allocating special-
ized, low-level resources which can accomplish only one task type (adders,
multipliers). In the synchronous case communication takes no time and the
restriction that the duration of every operation is one control step is often
acceptable. In the programmable DSP case we have much fewer resources
that can accomplish many types of tasks (up to very complex operations like
FFTs) and the communication must be accounted for. In this thesis we will
mainly concentrate on the programmable DSP case (as the Rafael design
system supports actually only these kinds of devices) but we will refer all
the time to the very similar data path synthesis problems.

Major part of this thesis will be devoted to the static partitioning and
scheduling problem. We already have the APEG and we have a description
of resources in the target hardware. The goal is to find an assignment of op-
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erations in the APEG to resources (partitioning) and an order of operations
assigned to a resource (scheduling) which is optimal in some sense. In many
cases we will simply use the inexact term scheduling problem which includes
both tasks.

The target system can consists only of the same type of processing units,
in this case we call our task homogeneous scheduling problem. If the execution
time of an operations may depend on the processing unit which executes it,
we face the much more complicated heterogeneous scheduling problem.

The heterogeneous scheduling problem has many practical aspects. First,
it is a common practice to use less powerful (thus less expensive) processors
and prescribe cheaper DSPs for subtasks which cannot exploit the capabili-
ties of a bigger DSPs. Second, a very important (and fashionable) research
area is the development of co-design methods. Co-design means that the
output of a design process is a mixed hardware-software realization. An in-
telligent design software may decide, which part is to be realized in hardware
and which in software and it has to generate circuit descriptions/programs.
This design method gained considerable importance with the introduction
of DSP cores - cell libraries containing entire DSPs that can be embedded
into one’s circuit design. Co-design results in integration of heterogeneous
systems so it involves heterogeneous schedululing. Chapter 2 will deal with
the scheduling problem in details presenting solutions to the less-researched
heterogeneous case.

1.3 Synchronous dataflow languages

There is a big problem with the dataflow approach, the properties of the
BDF graphs cannot be proven in every case. As we could see in the previ-
ous sections, static dataflow graphs can be proven quite easily but it holds
true only for some classes of BDFs. Proving one’s input algorithm is very
important in the case of complex, time critical programs. This need inspired
the creation of synchronous dataflow languages which are based on simple
but deep mathematical principles so certain properties of the programs can
be proven. The class of the systems to which these languages were devel-
oped is the reactive system class. We call systems reactive if they maintain
permanent interaction with their environment. In addition, we use the word
real-time if there are timing constraints defined.

The basic idea behind the synchronous approach is simple: we suppose
ideal reactive systems in which internal processing takes no time. If out-
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put signals are emitted at a certain time instant, they will be produced
at the same time, synchronously with the input signals. We call a system
reactive if it interacts continuously with its environment, it receives input
events and produces output events. Note that this approach uses the “syn-
chronous” word differently to the usage of this word by the dataflow termi-
nology. Big advantage of this approach is that ideal synchronous systems
can be decomposed into components without affecting the behaviour of the
system. The first introduction of synchronous concept for software appeared
in [Berr83, LeG86]. One of the best surveys of the topic is [Benv91].

There exists a set of actual machines for which the ideal synchronous
model can be applied immediately. Fast processors in slow environments are
handy examples for this. For example a VLSI realization with some 10 ns
cycle time can give almost instantenous response. [Benv91] shows how the
synchronous approach can be used to describe asynchronous systems like
dataflow graphs.

There are two families of synchronous languages.

e State based languages like ESTEREL [Bous91]. ESTEREL modelizes
state machines by instantaneous broadcast events which bring the ma-
chines into new states.

o Multiple Clocked Recurrent Systems (MCRSs) like SIGNAL [LeG91]
and LUSTRE [Halb91]. These languages describe the state transition
diagram to be modelized by means of recurrent equations. This ap-
proach is obvious for discrete time systems.

Synchronous languages provide an efficient tool for generating data flow
graphs whose properties are proven.
We will introduce three dataflow languages in short here.

1.3.1 ESTEREL

The basic notion of ESTEREL (similarly to other dataflow languages) is
the “signal”. Signal is a stream of time instants at which a signal can be
present or missing. If a signal is present, it can also have a value. All the
synchronous dataflow languages share the common notion that the input
signals provoke instantaneous reaction.

The reaction mechanism of ESTEREL is based on broadcasts. Broadcast
is a signal which can be seen by every receptors in the program. Broadcasts
can emit signals that can be tested for presence, value, etc. The emitted
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signal is restricted to a given time instant and is received as present by all
the receptors during this instant. Example :

present T then emit U end
I

emit S
I

present S then emit T end

The || delimiter creates parallel tasks. Signal S is broadcasted by the
emit statement, it is received by the present S which in turn emits T. Signal
T is then emitted and is received by present T which emits U. At the end
all the signals S,T and U are emitted at the same instant.

The most basic ESTEREL structure is the generalized watchdog. Its form
is the following :

do
loop body
watching signal

This structure executes the loop body until

1. The loop body terminates

2. The signal argument to the watching arrives
Example :

do
await INPUT;
emit OUTPUT
watching TERM

The await statement waits for the INPUT signal. As soon as this signal
arrives, the emit statement emits the OUTPUT signal. The watching structure
guarantees that the body be interrupted as the TERM signal is raised. The
structure can be extended by the timeout part which is executed if the loop
body is terminated by the watched signal. Example :

do

await INPUT;

emit OUTPUT
watching TERM
timeout emit TIMEQUT
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The TIMEOUT signal will be emitted only if TERM arrives before INPUT.
Other basic structure is the trap. We may have :

trap SIG in
await INPUT;
emit OUTPUT;
exit SIG
end

This structure waits for INPUT, emits OUTPUT then it is preempted by the
exit SIG statement.

The ESTEREL compiler [Est88] uses effective compilation algorithms
[Gonth88] to eliminate the programs with certain semantical problems, for
example deadlocks, short circuits. This is done by means of a potential
Sfunction that administrates which signals can or cannot be emitted at a
certain instant. This is used for ordering the signals so that a sequential
execution scheme can be generated. If this order cannot be established,
casuality problem is signaled. This approach is called ezecution semantics.

Other, more exact proofing method of ESTEREL is based on the behav-
ioral semantics [Plot81]. This semantic works with transitions which are
described in the following general form :

Input/Output
Program — NewProgram
Terminated

This notation means the following: if the input event is Input, Program
reacts by producing Oulput and goes to the new state so that at the next
instant NewProgram will be executed. Inference rules are used to construct

compound statements. The example rules for do ... watching taken from
[Bous91] :
/0
p — 9
true
/0
do p watching § —— nothing
true

The rule above means that if we suppose that the body p terminates, the
watching terminates too leaving nothing as residual program.
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1/0
p — q
false
/0
do p watching S —— present Selse do g watching S end
false

If the body p does not terminate, S is tested for presence at the next
instant and loop body ¢ is executed if S'is not present.

The inference rules presented above are used for building proof trees.
Inference rules are used systematically by the reasoning system for finding
out properties of the program.

The ESTEREL compiler translates the program into finite state ma-
chines which can be implemented very efficiently. In the resulting program
parallelism and local communications are transformed into sequential code.
ESTEREL compiler is also able to produce conditioned dataflow graph that
in common format with other dataflow languages. We will deal with this
format in chapter 2.

Realizing the unability of the synchronous languages when handling
asynhronous distributed algorithms in [Berr93] a new extension of ESTEREL
is presented in which they integrate the synchronous ESTEREL with CSP
[Hoar85]. CSP is an asynchronous language using classical interprocess com-
munications like rendezvous. New CSP-like statements are :

channel C;

which declares a communication channel called ¢ and
rendezvous L : C;

which accomplishes a rendezvous on channel C. The L parameter is an
optional label. Three signals are automatically created by the rendezvous
statement : sL, L and kL, sL is used to request the rendezvous on C| L is
used for signaling the completion of the rendezvous while kL signals aban-
doning the rendezvous request. A given channel can accomplish only one
rendezvous at a time. The referenced paper includes the new operations
into the behaviorial semantics.

1.3.2 LUSTRE

As LUSTRE and SIGNAL (which will be described in section 1.3.3) are very
similar, we will describe LUSTRE [Halb91] very shortly. As in the case of
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every dataflow language, LUSTRE works on signals. Signals in LUSTRE
are valued data streams, at a certain instant a signal can be absent so that
it does not have value or present when it holds a value. We can approach it
from an other direction: a signal is composed of two data streams: a clock
which determines the instants of the signal’s presence and a data stream
which carries the values. Data in that stream can be absent. The most
important restriction of LUSTRE to SIGNAL is that all the signals have
one common clock.
LUSTRE is a definitional language. It means that a

0 =1I;

should be considered in the equational sense, not as a declarative assignment.
It is the so called substitution principle, 0 can be substituted with I anywhere
in the program and conversely. As a consequence, equations can be written
in any order, it will not change the meaning of the program.

Types are usually imported from the “host language”, the language to
which the LUSTRE compiler translates. Usual operations are avilable on
these types. A bit less usual operation is the if ... then ... else struc-
ture. An example:

if E < 0 then X+1 else O

which means that E and X has the same clock and this will be the clock of
the result as well. At the nth instant the result will have the value of X,, +1
if £, < 0 else 0.

The operation set is extended by “temporal” operators.

e Delay

pre which realizes a delay. If the data stream of I is (41, %2, i3, ..., in, -..)
then pre(I) will be the sequence (nil,;, 3, ..., tp—1,...). The first nil
denotes the value of an uninitialized memory.

e Initialization

-> (followed by). Let I and F be two signals with the same clock then
I->F will be always equal to F except for the first instant when it is I.

¢ Downsampling

when, downsampling. If I is a signal and F is a boolean signal with the
same clock, I when F will have the clock of F but it will have absent
value whenever F is false. If F is true, the result will be the value of I
in that instant. See figure 1.3.2.
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¢ Interpolation

current interpolates the signal. current I has the value of I if it
is present else it holds the last value of I when it was present. The
statement is illustrated in figure 1.3.2.

F true true false false true
I 1 9 T3 T4 5
I when F 1 To Ty

Figure 1.4: The operation of when in LUSTRE

I 1 D) 5

current I | xz1 z9 Z9 X9 ;3

Figure 1.5: The operation of current in LUSTRE

Assertion is a speciality of LUSTRE. One can define some known prop-
erties of the environment and it may influence program optimization and
verification. We can say for example that a certain signal is never negative.

assert (x >= 0);

LUSTRE groups equations into nodes. A node is a part of the dataflow
operations collected into one unit with parameter header and local variables.
For example a FIR filter node would look like the following :

const al,a2,a3:real.

node FIR(x: real) returns(y: real)
var rl,r2:real;

let
rl = (0. -> pre(x));
r2 = (0. -> pre(ril));

y = alxx + a2*rl + a3*r2;
tel.

LUSTRE compiler uses several program proofing methods, beside the
common semantical analysis (number of variable definitions, absence of re-
cursive calls, loop-free definitions) LUSTRE introduces clock calculus. This
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calculus is used to prove that operator arguments have the same clock and
the clock of any operands of the current operator is not the basic clock
of the node. LUSTRE uses a simple scheme for proving clock equality, it
substitutes the signal definitions when a derived signal is used in an equation
then compares the resulting expressions. For example :

y = b+c;
al = 0.-> b+c;
a2 = 0.-> y;

After the substitution of b+c in the place of y we will have two identical
equations.

The actual LUSTRE compiler produces a graph format common to ES-
TEREL. From this format code generators can be used to translate toward

C, Lisp and ADA.

1.3.3 SIGNAL

SIGNAL language was presented in [LeG86, LeG91]. SIGNAL is based on
very similar principles to LUSTRE. The main difference between SIGNAL
and LUSTRE is the introduction of missing signal state denoted as L. This
allows SIGNAL systems to be multi-clocked in the sense that the clock of
signals can be different. FEach signal is associated a clock which can be
present or L at a certain instant. Each time the clock is present, the signal
has value. SIGNAL is based on only 5 kernel constructions.

e Instantaneous function calls
Y := £f(X1, ... , Xn)

The basic functions defined by the host language are extended to sig-
nals. This is a monochronous operator, Y, X1, X1, ..., X,, have the same
clock. The function call is instantaneous so an Y value calculated from
X values of a time index n will have the same n time index.

e Delay

The delay operator is used to create index shift between its input and
output signal. This operator is also monochronus, the clock of its
output is the same as the clock of its input.



1.3. SYNCHRONOUS DATAFLOW LANGUAGES 21
Y:=X$2
will result in
VYn > 1 Yp = Tp_2

The initial value of the delay can be prescribed when declaring the
variable.

integer Y init O

The behaviour of the delay operator above is shown in figure 1.3.3
(supposing 0 initial value)

X 1 D) T3 T4 Ty

Y 0 0 T () 3

Figure 1.6: The operation of delay in SIGNAL

¢ Extraction

Extraction operator is used very similarly to that of LUSTRE to down-
sample a certain signal driven by a boolean gate signal. If X is any
signal, B is a boolean-valued signal which has true or false values, the
output will have the value of X at time instants when both X and B are
present and B is true. This operator is called polychronous as it allows
operands with different clocks.

Y := X when B

Time diagram 1.3.3 illustrates the operation of when.

X T 1L T3 T4 5

w

true true false L true

Y 1 L 1 L 5

Figure 1.7: The operation of when in SIGNAL
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¢ Deterministic merge

This operator allows merging its two input signal with priority. If A
and B are two signals,

Y := A default B;

will produce an Y signal which has the values of A whenever A is present
and if A is not present but B is, Y has the value of B. The instant set of
the resulting signal is the union of the instant set of the input signals
and priority is given to A if both inputs are present. Figure 1.3.3
illustrates the operation of default.

A ay 1 as L as
by by L L b5
Y ay bg as L as

[ss}

Figure 1.8: The operation of default in SIGNAL

The default operator has an important theoretical consequence: faster
clocks can be generated by means of this structure than the clock of
any input.

¢ Process composition

SIGNAL equations shown above are considered elementary processes.
The structure

P 1QlR)

allows for creating a new process from system of equations. In this
new process common signal names denote common signals.

SIGNAL compiler uses a very elegant method called clock calculus for
checking certain properties of the program and for generating the execution
scheme. SIGNAL programs are transformed into boolean equations to ex-
press the presence of signals and boolean operations and dependency graphs
to describe data dependencies of non-boolean functions. Integer values are
assigned to signal states as the following :

true — +1
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false — —1
absent — 0

present — +£1

Operations on these values are made modulo 3, the field consisting of the
values above and the operations will be denoted F5. A signal is represented
as ¢ and z? represents its clock. With these notations y := a+b can be

coded as the following :

y? y?
a — Yy b — y

The above equations mean that y, a, b all have the same clock and ¢ — ¥

y? = a? =12,

and b — y dependencies hold when the common clock of y, a, b signals y>
is present. The description above is extended to all the SIGNAL operators
[LeGOI1]. For example in the case of default :

In the case of boolean signals :

y=u+o(l —u?)

In the case of non-boolean signals :
u? 1 — u?)v?
y2:u2—|—v2(1—u2), by ( __)) .
It means that the clock of y will be the clock of w if present, else the
clock of v. y will depend on u if present else on v if present.
Systematically using the method above means will result in a conditional
dependency graph and attached clock equations. The following simple equa-

tion set

a+hb
y default c |[)

( y:
| =z :

has the dependency graph depicted in fig 1.9.

When SIGNAL compiler translates a SIGNAL program into sequential
executable it builds a clock tree [Amag94]. This clock tree is constructed like
the following

o We call free boolean signals the inputs, values resulted in the evalua-
tion of boolean expressions and values from boolean memories. Clocks
defined by the true value of a free boolean signal (when C) and clocks
defined by the false value of that signal (when not C) are called down-
samplings of that signal and inserted into the subtree of the boolean
signal.
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h
/ x
b Y y Y a
y2
z
1y Ac?

cC=——C¢C

Figure 1.9: Conditional dependency graph of the example program

o If K lies under H then all instants of X form a subset of instants of H

We get this way a set of interconnected trees that we call forest. The
forest may or may not have one common root, in the latter case the system
does not have a single master clock.

Pieces of the conditional graphs are attached to this clock tree thus yield-
ing the conditional hierarchical graph. The signals available at a given clock
are connected to this clock in the tree and also the expressions which define
these signals. The resulting graph is the base of code generation. Figure
1.10 depicts the scheme.

C
| Expressions | -,
| ; v L Cy
"belongingto |
,,,,, Cl/m
C2
| Expressions
AN /,f/i belonging to
C2

Figure 1.10: A conditional hierarchical graph

The code generation is based on nested if ... then constructs. Clocks
are represented as boolean variables and the following structure is generated
from the graph in fig. 1.10
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if C then
if C1 then
. operations belonging to C1 come here in
dependency order ...
if C2 then
. operations belonging to C2 come here
in dependency order ...
endif
endif
endif

The SIGNAL compiler is capable of generating C and Fortran sequen-
tial code or an intermediate format for the SynDEx parallel code generator
[Sor94]. The last extension of the language (SIGNALGTI, [March95]) intro-
duces time intervals and preemptive tasks to the language.

1.3.4 SFG generation from synchronous description

We have presented three synchronous languages and we went into details
how sequential program is generated from the concurrent description in the
case of SIGNAL language. As we have already mentioned in section 1.2.3,
the consistence of BDF graphs in general case can be difficult to prove. On
the other hand, synchronous languages readily generate conditional dataflow
graphs. We can exploit therefore the sophisticated proofing mechanisms of
these languages and suppose much simpler dataflow graph constructs than
the general BDF case. These important simplifications are the following:

o SIGNAL compiler groups the operations having the same condition to-
gether and resolves their dependency orders. We have therefore blocks
of dataflow graph pieces assigned to their conditions as result of com-
pilation.

e Biggest weakness the SIGNAL language is blamed for in [Buck93b]
is that it allows only one token on every arc, token queuing is not
supported. Correct SIGNAL program thus cannot describe dataflow
system where an arc needs unbounded memory that must be allocated
dynamically, in run-time. [Buck93b] mentions this fact as a disadvan-
tage (context-free grammar parser that needs probably unlimited stack
cannot be implemented in SIGNAL ...) but this restriction greatly
simplifies the memory allocation scheme of the multiprocessor code
generator attached to SIGNAL compiler.
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e The condition scheme we get from SIGNAL compiler is consistent. An
SFG compiler processing output of SIGNAL compiler must not deal
with the problem whether the graph it transforms into multiprocessor
code is consistent or not.

The approach of generating multiprocessor code from SIGNAL’s output
has already been used in the SynDEx environment [Sor94] and we will exploit
the simplifications above when presenting the software models of the Rafael

system.



Chapter 2

The static scheduling
problem

2.1

Problem formalization

First we modelize both the algorithm to be scheduled and the target hard-

ware.

We use the following model for the algorithm.

We suppose a problem which can be described by static data flow. The
real restriction that we impose is that we know the precise dependency
graph. As it was described in the introduction the creation of acyclic
precedence graph from the general dataflow graph is not an evident
question in the case of BDFs. We suppose this problem solved.

The precedence relations among the tasks can be represented as a
directed acyclic graph. Nodes in this graph represent operations,
branches represent precedence constraints.

We decorale this graph, we call the decorated version Decorated Acyclic
Precedence Graph (DAPEG). Execution time vectors are attached to
each node. Execution time vector contains the time necessary to ac-
complish a task on a certain processor.

Branches of the precedence graph are decorated by the amount of data
units transferred through them when the operation node at the input
of the branch is fired.

An example DAPEG can be seen in figure 2.1.

27
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2 2
[1,4,4] [22,2] [55.10]
[3.1.1] [10,1,5] [9,7,80]

Figure 2.1: A decorated acyclic precedence graph

We will use the following notations: we have a G(V, E') acyclic precedence
graph where V is the set of nodes, E is the set of edges. The graph contains
N nodes (N = card(V)) and we will denote one node as n; € V. We say
that n; is tmmediate predecessor of n; if there exists a directed edge from n;
to nj. In this case we will say that n; = prev(n;) and n; = suce(n;). We
attach the computation time vector to each node :

ffb = [;17 n,27° " Z,P]vlgné N
where P is the number of the processors in the target hardware and 7 , is
the execution time t¢ of node n on processor p.

The modelization of the target hardware is a harder task. The scheduling
problem is just enough complex so the hardware model is often simplified
in many approaches. First, most frequent simplification is that the target
hardware is homogeneous so it contains the same type of processors. This
restriction must be relaxed because of the importance of mixed-type real-
izations. Other accepted simplification area is the communication model.
Realistic modelling of the wide variety of communication hardware is not
an easy task. In the common DSP hardwares the following main types of
communication hardwares exist :

e There is no need for communication hardware in VLSI realizations
where the internal operation connections are made via wires and it
takes no time to communicate thorugh them.

e Programmed communication without hardware support. Several custom-
built low speed communication hardware of cheaper DSPs fall into this
cathegory.



2.1. PROBLEM FORMALIZATION 29

e Programmed but interrupt-supported communication hardware. Al-
most every cheaper DSPs (Texas TMS320C25, Motorola DSP56000)
has some means of communication (serial lines, parallel interfaces)
which are supported by interrupt-driven software.

e DMA-supported communication hardware in the more expensive (Texas
TMS320C40, Motorola DSP96000) DSPs and in the Transputers (T800,
T9000).

e Shared memory in custom DSP realizations and in the Texas TMS320C80
multi-DSP chip.

e Dedicated communication hardware (communication coprocessors) in
massively parallel computers.

As we advance on the list, each form of communication is more sophis-
ticated and require less processor overhead. Other important question is
the communication topology. The simplest one is the totally interconnected
structure which is suitable only for smaller processor numbers. Fig. 2.2
shows some of the more frequently used topologies.

rrrrt1

Bus structure

Totaly interconnected X
Chain structure

Cube structure

Figure 2.2: More frequently used communication topologies

The communication activities can be dynamically or statically sched-
uled as the operations. Dynamically scheduled communication needs a com-
munication layer which works in the background. This layer processes au-
tonomously the communication tasks, sends the messages in the background,
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passes the received messages up to the computation layer, forwards messages
whose destination is an other processor. This solution is easier to realize than
the totally static communication where all the communication activities are
scheduled together with the computations. Big drawbacks of the dynam-
ically scheduled communication are that computation durations are more
difficult to estimate (because of background tasks’ processor load) and the
dynamic scheduler, interrupt handler, etc. waste processor time.

A scheduling algorithm which has to consider the effect of the commu-
nication must calculate a correct estimate of the communication time nec-
essary to pass a data block between two processors. In the case of more
complex communication scheme this estimation is not an obvious task. If
the communication activities use shared communication channels, the inter-
ference of the messages passing on the same channel must be considered.
If the communication activities are scheduled statically as well (so there is
no underlying communication layer) and the communication graph is not
entirely connex (messages must travel through intermediary processors to
reach their target) the schedules on the intermediary processors must also
be considered.

P1 P2 P3
Rec P2->
Send->P3
/ RecPL>
Send->P3
P1 P2 P3

Figure 2.3: The effect of the schedule on the communication

Because of the difficulties of the exact communication modelling, simpli-
fications are frequent. Following approaches are common :

1. Communication costs are neglected. This approach is acceptable only
in the case of very coarse-grain DAPEGs or hardware realizations. In



2.2. STATIC SCHEDULING METHODS 31

fact, VLSI design algorithms never consider internal communication
costs.

2. Uniform communication cost is supposed for every communication link.
This model is acceptable in the case of totally interconnected topology
with the same type of communication links.

3. Different communication cost for each communication links. This ap-
proach tries to offer an acceptable model for the effects of the message
forwarding and bus occupation. Higher communication costs are given
to “farther” processors (if the message must be routed through an
other processor, for example).

4. Full modelling of the communication hardware including correct com-
munication channel scheduling and operation scheduling interference.

Modern scheduler algorithms use only the 3rd and 4th models. The prob-
lem with the 3rd model is that it does not consider communication channels
as resources and it may seriously underestimate the necessary communica-
tion time if there are many requesters for one channel. The 4th point is
problematic because - as we will see - the scheduling problem is just enough
complicated without communication channel scheduling. This results in the
fact that the 4th model is employed only by simpler schedulers which pro-
duce much worse quality results than the more complicated ones while more
efficient schedulers stick at the 3rd model acknowledging its inexactness.
Our schedulers use the 3rd model as well but in section 2.5 we will present
a version of our scheduler using the 4th model.

2.2 Static scheduling methods

In the following we give a quick overview on the existing scheduler algorithms
before presenting the schedulers used in Rafael.

2.2.1 ASAP and ALAP schedules

These most basic scheduling methods are the As Soon As Possible and As
Late as Possible algorithms. If we have unlimited resources, these algo-
rithms produce minimal-length schedules but the resource utilization can be
suboptimal. The algorithm was presented first in Hu’s classical publication
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[Hu61]. ASAP scheduler starts operations as soon as all the predecessor
nodes terminate the computation that is

E(n;) = maz(E(pred(n;))) + t; (2.1)

where ¢; is the execution time of node ¢ and E(n;) is the earliest time when
n; can be executed. Nodes with no predecessors has £ = 0. This simple
version is only for homogeneous architectures. The original version supposes
unlimited resources and schedules nodes just at their F.

ALAP schedule is based on very similar principles. Nodes are scheduled
as late as possible without increasing the length of the schedule.

L(n;) = min(L(suce(n;))) — U (2.2)

L(n;) is the latest time when n; can be executed in the case of minimal
length schedule. L values of nodes with no successors are initialized to the
maximal F value over the entire graph. Figure 2.4 depicts the ASAP and
ALAP schedules of an example graph.

ASAP ALAP

Figure 2.4: ASAP and ALAP schedules

2.2.2 Integer Linear Programming (ILP)

[Lee89a] presents an algorithm for VLSI data path synthesis which produces
optimal solution. This algorithm leads back the scheduling problem to a
linear optimization task. The basic version of this algorithm supposes the
common restrictions in data path synthesis :

e Each operation has one cycle propagation delay

e Communication is costless
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The algorithm is capable of finding minimal-length schedules but unlike
ASAP and ALAP this method allocates minimal number of computation
resources. The optimization task is formulated as a set of linear equations.
The formulation uses the following variables :

1. M;, integer variables which denote the number of computation units
of type t; needed. (¢; can be multiplier type, comparator type, etc.)

2. x;; are 0-1 integer variables. z;; = 1, if node 7 is scheduled at time
step 7, 0 otherwise.

We will denote the cost of a computation unit of type ¢; (F'Uy,) as ¢4, there
are m types of computation units and let S be the length of the ASAP and
ALAP schedules (number of control steps required).

First we make the ASAP and ALAP schedules thus determining S, ASAP
and ALAP times. Now the minimization problem is the following: we want
to minimize

Ecti . Altz‘ (23)
=1

with the following restrictions :

N
Y@= My <0, for 1< <S1<k<m o (24)
i=1,n; €1V,

Eq. 2.4 expresses that in each control step at most M;, computation
unit of type {; can be used.

S owij=1, for 1<i<N (2.5)

which means that only one z; ; variable can be 1 in the ASAP-ALAP range
for each operation.

L, Ln,
Z Jrxig— Z Jrxp; < -1 for all  n; = pred(ny) (2.6)

Eq. 2.6 forces the precedence constraints so that each predecessor oper-
ation be scheduled before all its successors. The equation set yielded is then
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solved by a linear programming package. [Lee89a] extends the method to
multicycle operations, pipelined data paths and mutually exclusive opera-
tions.

Big disadvantage of the ILP method is that its computational require-
ment quickly becomes intractable [Gajs92]. For example if we increase the
control step by 1, it means N new =z;; variables. There were efforts to
split the problem into smaller parts and use ILP for the subproblems only
[Hwang93] but ILP is still unpractical for larger problems.

2.2.3 Branch & Bound algorithms

Other well-known approach used mainly in the artificial intelligence fields is
the decision tree search. If we evaluate all the possible solutions, we must
find the best. See fig. 2.5 for a decision tree of a simple scheduling problem.

N2->P1 N2->P2 N2->P1 N2->P2

N3->P1  N3->P2 N3->P1 N3->P2 N3->P1 N3->P2 N3->P1  N3->P2

Figure 2.5: Decision tree of a simple APEG on a two-processor system

As we could easily see, the number of leaves on the tree - thus the com-
binations to be evaluated - is PV. An algorithm which traverses the whole
tree has exponentional complexity and it produces inacceptable execution
time even in the case of very small problems. Heuristic methods are used
to “purge” the decision tree. “Purging” the tree means that some combi-
nations are eliminated based on heuristic rules. The resulting algorithm is
called Branch & Bound class which includes broad variety of solutions. First
publication of B&B for the scheduling problem appears to be [Green87].

In [Green87] two heuristic functions are presented to predict the length
of the final schedule from the partial schedule. The algorithm maintains a
“length of the best schedule found so far” variable. At the beginning this
variable is not valid. First we start at the root of the decision tree and we
make a tentative decision, for example we suppose N1 to be scheduled on P1.
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We evaluate the heuristic estimation function and compare the result with
the best schedule found so far (if this variable is not valid yet, we consider
the result “less”). If the comparation yields “greater” result, we ignore that
branch of the decision tree and make a new tentative decision. If the result
of comparation is “less”, we advance on that branch of the decision tree
and we schedule a new node. If we got to a final schedule and its length is
less than the best schedule, we record the best schedule and its length and
step back to the previous level of the decision tree. Fig. 2.6 illustrates the
method.

Actual best schedule length : 20

N1=2, est=15

N2=1, est =22 N2=2, est=18

N3=1, final =24 N3=2, final =17

recorded as new best schedule

Figure 2.6: Purging the decision tree in the Branch & Bound algorithm

The heuristic function has critical role in the utility of the B&B algo-
rithm. If it underestimates too much the schedule length, too few branches
will be purged and the execution time will be inacceptable. If it overesti-
mates, however, branches leading to the best solutions may be cut.

[Green87] introduces three heuristic functions called OPT,H1 and H2.
OPT produces smaller estimates than H1 and H2. The OPT function gen-
erates the largest number of nodes. Let f; be the time when processor @
becomes free (finish time of the last operation scheduled on it) and

W = me(fi) for all the operations not scheduled so far  (2.7)
With these notations :
P

W —f;
PT = i g
0 maz( f;) + max(O,Z Iz )

i=1

(2.8)

[Green87] claims that OPT never overestimates the final completion time.
It is not true, see fig. 2.7 for an example. Other simplified function which
generates less nodes is called H2. H2 assumes that tasks not in the partial
schedule will have the same average execution time as the tasks in the partial

schedule.
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PL| N1 N2 PL| N1 N2
P2 P2 | N3 N4
1] 2] 1] 2]
APEG Partial schedule Final schedule
OPT=2+224+20 -3 Final schedule length = 2
2 2

Figure 2.7: A case when OPT overestimates the final schedule length

maz(f;)
tasks in the partial schedule

The referenced article uses H2 only after 20% of the tasks has been
assigned because the value of H2 varies widely at the beginning. Communi-
cation costs are not taken into account in this approach.

There were many efforts concerning the usage of the B&B style algo-
rithms for solving the static scheduling task. [Chow91] presents the well-
known A* algorithm in static scheduling application and [Konst90] describes
a B&B-style algorithm which is able to consider communication cost as well.
Advantage of the B&B methods is that it is capable of supporting hetero-
geneous architectures without difficulty. The biggest disadvantage is that
in spite of the decision tree cuts, B&B still has exponential complexity in
average so its evaluation can be very costly. We will see that algorithms
in polynomial complexity can produce as good results as B&B methods in
exponential time.

H2=N-

(2.9)

2.2.4 General List Schedulers

By far the simplest and most popular method is the list scheduler algorithm.
Huge number of applications has been published based on list schedulers.
The basic idea is very simple. We have a ready node list which contains
all the nodes that can be executed at the moment. First it is initialized to
nodes with no predecessors. Heuristic functions are used to pick a candidate
node among the nodes in the ready list and choose a processor for it. This
node is scheduled on the processor chosen, removed from the ready list and
the successor nodes whose all predecessors have been assigned are inserted
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into the ready list. The algorithm terminates when the ready list becomes
empty.

The interesting part here is the heuristic which selects the candidate node
and/or the appropriate processor for it. The simplest approach is based on
ASAP level: nodes with smaller ASAP levels are scheduled first [Tseng86].
More advantageous approach is to delay the nodes as late as it does not block
the execution of other nodes, this is the ALAP-based scheduling, nodes with
the lowest ALAP levels are scheduled first [Kung85]. Combination of the
two approaches is the mobility or freedom-based scheduling. The mobility is
the difference between the ALAP and ASAP time, operations on the critical
path has 0 mobility. An operation belongs to the critical path if it cannot
be delayed without increasing the length of the schedule. In the mobility-
based schedulers [Pang87, Goos87, Mirch88] nodes with lower mobility will
be scheduled first.

We will examine here a little bit more in detail an ALAP-based scheduler
which is used in the SynDEx system [Sor94] as we will use both the system
and the scheduler as reference.

SynDEx scheduler is an ALAP-based scheduler whose cost function is :

Jnip = t;;m” — talap (2.10)

where t;m” is the earliest time when the execution of node ¢ can be started
on processor p taking into account the finish time of the operations on that
processor and the time necessary to pass each variable needed by the oper-
ation from other processors.

The node-processor selection part is rather complicated.

1. First the best processor is found for every ready node. The best pro-
cessor is the one on which the the node achieves the minimal start
time.

2. We look for the node with the best (earliest) start time and we will
denote it earliestcandidate. We define the limit date variable as the
following: limit date = start time of earliestcandidale + duralion of
earliestcandidate.

3. We evaluate the cost function for each ready node whose start time is
smaller than the limit date. We pick the node with the highest cost
(most urgent to execute) and we schedule it on its best processor.

We will evaluate this method in section 2.3.
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In their very influential and frequently referenced article Paulin and
Knight [Paul89] introduced a sophisticated heuristic function using “forces”
to describe how necessary it would be to assign an operation to a functional
unit. The force calculation considers the effect of the preceeding assignments
and the effect of the assignment on successor nodes as well. Advantage of
the method is that it paralelly considers the effect of scheduling of all the
nodes and also their successors.

One of the most advanced list scheduler (practically the state of the art)
was introduced in [Sih93a], the DLS scheduler. DLS uses a very complicated
heuristic function in which

1. the communication time
2. heterogeneous target system
3. descendant consideration

4. resource scarcity (how important it is that a certain node obtain a
certain processor)

are taken into account. We will use DLS as a reference algorithm for perfor-
mance evaluations of our algorithms.

2.2.5 Graph partitioning algorithms

The rather fuzzy class name in the section title denotes algorithms which
cut the graph into pieces first using heuristic methods then schedule these
partitions on processors. These algorithms are the most complicated heuris-
tic schedulers and on homogeneous architectures these methods produce the
best results.

The linear clustering technique groups the most expensive paths into
linear clusters [Kim88]. Linear cluster is a degenerate tree in which every
node has exactly one predecessor and successor. In each iteration the most
expensive path (both in communication and in computation) is grouped into
a linear cluster and nodes belonging to this path are removed from the graph.
The resulting clusters are then mapped to the processor architecture using
graph-theoretic techniques.

The internalization technique [Sark89] clusters nodes together in order to
minimize the schedule length on an unbounded number of processors. First
each node is put into different clusters then the algorithm tries to unify
clusters. Two clusters can be merged if there are communication between
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them, the algorith tries to “internalize” the communication between clus-
ters. A clustering step is accepted if it does not increase the length of the
schedule else the clusters remain unmerged and the next arc is considered.
The schedule lenght estimation algorithm is similar to critical path methods.
First the earliest and latest start time of the nodes are calculated similarly
to the ASAP-ALAP method taking into account the communication times.
The main difference is that now we enforce that nodes in the same cluster
be scheduled on the same processor. We suppose unbounded number of
processors in this pass. When the clustering phase finishes, a modified list
scheduler is used to assign clusters to processors. This list scheduler tries
to assign each unassigned cluster on each processor and maps the cluster to
the processor which yields the minimum execution time.

Intersecting branch case Nonintersecting branch case

Cutting down parallelism instances at branches
Figure 2.8: NBranch and [Branch instances and arc cuts

In [Sih93b] a complex method is presented which produces even better
clusters than the previous algorithms. We describe the method only briefly
here, interested reader should consult the referenced article.

e First the reachability setis determined for each node. If node j is in the
reachability set of node 7 it means that precedence constraint (direct or
indirect) exists between the two nodes, node ¢ must be executed before
node j. Then branches of the graph are categorized to intersecting and
nonintersecting branches. A branch is intersecting if RS(B)NRS(C)is
nonempty (where RS(B), RS(C') are the reachability sets of the branch
nodes), nonintersecting else.
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e The branch instances are inspected whether it is worth cutting down
one branch. We verify whether we gain by parallelism or loose by
communication cost by scheduling the parallelism instance on an other
processor. If we gain, the branch is sliced down (are sliced down in the
Ibranch case) and is registered as a new cluster.

o The clusters are grouped hierarchically. At each step the clusters which
communicate the most are selected and merged.

o Declustering. We take the two top clusters in the cluster hierarchy
and shift some of them to candidate processors selected according to
communication costs and we verify, if we yield better schedule than
the actual one and save this schedule if it is better. Then we move to
the next cluster pair in the hierarchy tree.

As we could see, all the schedulers in this section depend heavily on the
fact that speedup can be yielded only by maximizing parallelism exploitation
and minimizing communication load. Neither of them is able deal with
heterogeneous architectures.

2.3 The Rafael heterogeneous list scheduler (RHLS)

The first Rafael scheduler was developed for really rapid prototyping, for
this reason we chose a list scheduler. Experiences got with RHLS shown us
what we can expect from a list scheduler. RHLS is an ALAP-based scheduler
which was made suitable for heterogeneous environment.

In the first step we create ASAP and ALAP schedules in order to get the
ALAP levels. (See section 2.2.1). We assume that we can always schedule
the nodes on the fastest processor possible so minimum execution time is
supposed when building the ASAP-ALAP schedules. Then we launch the

list scheduler as it was described in section 2.2.4.
154 = min(t;,)
Then we define urgency of the operation n like the following :

where ¢, is the virtual time and it will be detailed later.
The base of the scheduling heuristic is to assign the nodes on the critical
path to the fastest processor available. The more urgent it is to execute a
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node (as its delaying would set back the execution of the whole graph) the
faster processor it deserves. The most urgent nodes are those which have
the lowest ALAP time.

We pick hence the node to be scheduled, we need the best processor to
execute it. The best processor selection is very simple: we try the node on
each processor considering the communication costs and we pick the one on
which the node achieves the earliest completion time. Before trying a node
on a processor, necessary communication activities are scheduled tentatively
so that we know how much time must be calculated for fetching the input
variables produced on other processors.

The heuristic algorithm works like the following :

Create the ready node list from nodes that has no
predecessors
while the ready list is not empty do
for all nodes do
if u(i) < minimum so far
Candidate = node 1i;

end for

Try the candidate on each processor
considering communication cost;

Choose the processor on which the task achieves
the earliest ending time;

Schedule candidate node and the necessary
communication activities on candidate
processor;

Update u(i)s and tv;

Add nodes that become ready to the ready list;

end while

As the real {,,; node starting times will generally not be equal to the ideal
ASAP or ALAP starting times the scheduler maintains real processor times
and ¢, virtual time. The virtual time is used to track the time in the ALAP
schedule graph while the real time is the scheduling time on the processors
The t, variable shows where we are in the ALAP schedule graph, it is set to
the lowest ALAP time among the ready nodes. The last step is the updating
of urgency and virtual time variables.

We evaluated RHLS with two reference algorithms: SynDEx and DLS
(see section 2.2.4). The prototypes of the three algorithms were realized
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alg/RHLS results(%) | worst | best | average
DLS -21.95 | 6.96 -5.7
SYN -10.10 | 7.24 | -1.92

Tableau 2.1: Performance comparation of RHLS with the reference algo-
rithms

in Lisp and a 21-member set of DAPEGs was generated randomly. The
execution time of the nodes was in the 1-10 interval, the number of the
nodes was between 25 and 50, the set was homogeneous as SynDEx could
not support heterogeneous architectures. Communication times were not
generated randomly, we used a chain-like model where farther processors had
bigger communication cost. The graphs were scheduled by each algorithm
and the following ratio :

tsched

9 100% — 100%
tSC €
RHLS

was calculated wher tj?g“id is the length of the schedule produced by the

reference algorithm and ¢35 is the length of the schedule produced by

RHLS. The worst, best and average performance ratios can be seen in table
2.1 and the histograms of the performance ratio distribution is depicted in
figures 2.9 and 2.10.

As we can see the more complicated the heuristic rule is more cases
there are when it fits well the problem. The complexity of the heuristic
rule , however, is not proportional with the performance gain. The very
complex DLS heuristic rule gains only about 6% over RHLS and less than
4% over SynDEx in average and there are numerous cases when the simpler
algorithms produce better schedules. This disappointing experience diverted
us from the list schedulers and urged us to develop new scheduler methods.

2.4 Nonpipelined Springplay algorithm

The heterogeneous environment adds a new dimension of liberty to the
scheduling problem so the complexity of the problem increases significantly.
The - even partial - search of the decision tree or a formal ILP solution
are proved to produce inacceptable execution times. Inspired by the succes
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Figure 2.9: Distribution of DLS/RHLS results, 21 samples
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of Hopfield class of neural networks in solving optimization tasks [Hopf85,
Pars87, Mitt93, Rabe93] and by a very graphic representation of affectations
in the Force-Directed Scheduling algorithm [Paul89] we devised a new class
of heuristic scheduler that we call global heuristic optimizer. In this method
no decision is made but the heuristic rule is used to affect the state of the
resolver system. This system is constructed in such a way that it converges
toward the optimal solution. Springplay algorithm is the first application of
this global optimizer idea [Pall95].

2.4.1 Principles of the Springplay algorithm

In Springplay there is no decision making according to heuristic rules. Each
node has a state which is an analog quantity. For clarity, we have chosen a
geometric description form so node states are expressed as coordinates in a
P —1 dimension coordinate system. The state of node 2 will be denoted by a
P — 1 dimensional vector Vn, 1 < n < N. The processors are represented by
similar points as well, we call points representing processors fizpoints denoted
by F_Pp where p is the processor number. The fixpoints are arranged in such
a way that the distance between each point is 1, it is always possible to find
P such points in a P — 1 dimension coordinate system. The strongness of
membership of a node to a certain processor is measured by the distance
between the node state and the fixpoint of that processor. So the distance
between node n and processor p is :

dn,p :l ‘7n - F_Pp |

We use the following distance definition :

where a;,b; are the ith coordinates of vectors a, b, respectively. We call the
processor whose fixpoint is the closest to the state of the nth node (d,,, =
min(dy,p),1 < p < P) principal processor of node n and it is denoted as
pn. Node states are influenced by forces which are created in such a way
that they push and pull the node states to places which represent minimal-
length schedule. This force system will be detailed later. The resulting force
affecting node n is denoted F, its component pointing to processor p will be
referenced as ﬁn,p- Figure 2.11 shows the arrangement for 3 processors and
one node.
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Figure 2.11: Springplay arrangement of fixpoints, node state and forces

At the beginning all node states are initialized to the “center point” so
that Vd,; = d, ;,1 < t,7 < P,i # j “naive schedule” is generated using a
simple list scheduler. This schedule puts all the nodes to the first processor.

The algorithm maintains an actual schedule which is generated so that
the nodes be put on their principal processor. Actual schedule is made by
a simple list scheduler detailed later, at the beginning it is initialized to the
naive schedule.

After this the node state modification phase starts. The algorithm takes
the nodes one by one, calculates the actual value of the force exerted then
the node state is updated according to

AV, = F,At (2.12)
Vo=V, + AV, (2.13)

If the principal processor has changed because of the node state modification,
the list scheduler is invoked. The modification of the principal processor
changes the execution time of the node, the communication time and the
parallelism.

The list scheduler used in Springplay uses the actual principal processors
to determine where the nodes should be scheduled and higher priority is
given to nodes which can be started earlier.

S L = maz(finish time of all the predecessor nodes) (2.14)

The list scheduler simply gets the node with the lowest SL value (one is
chosen arbitrarily if there is more of them) and schedules it on its principal
processor. No communication activities are scheduled this time.

When one pass of node state modification is finishes - all the node states
has been modified - At is normalized according to Eq. 2.15.
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0.2
At = 7 (215)
M = facty - M + facty- | F, | (2.16)

FEq. 2.16 expresses that At is adapted to the absolute values of the
forces calculated during the convergence. Bigger the forces are, smaller Af
is to avoid instability. Exponential averaging is applied to the force absolute
values. This solution has two reasons.

1. The absolute value of the force in the last iteration cannot be used as it
introduces a too strong feedback in the system. This solutions showed
to cause oscillations in At so in the convergence process as well.

2. At the beginning extremely big forces can be present mostly if the force
coeflicients are big. Later, approaching to a solution the forces become
much smaller. Appropriate stepsize is required in the two cases.

During the experiments Springplay produced the best solutions with
Sfacty = 0.9, facty = 0.1 and fact; = 0.99, facty; = 0.01 values depending on
the graph.

The node state modification continues until any of the stopping condition
is satisfied. As no stability property has been proved for the algorithm,
we use strict stopping criteria at the beginning which is changed to more
indulgent ones later and after a certain number of iterations the modification
is stopped. As we will see, the length of the schedule can grow during
the convergence. If the convergence process is not stopped after a 1.5 -
N iterations we start to make final schedules and the best final schedule
produced during N iterations that follows is picked. The final schedule is
the same list schedule as above but it schedules the communication activities
as well. Recently send communication activities are inserted just after the
node which generates the output to be sent and receive operations are put
just before the nodes which need the value. This time we do not consider
the possible hardware support of parallel computation and communication.
This simple scheme will be refined in the future. The definition of SL (Eq.
2.14) is modified so that it considers now the communication time.

FSL = earliest time when all the inputs are available (2.17)

If the convergence is stopped before reaching 1.5- N iterations, final schedule
is made at the end else the best schedule found during the second N iteration
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is the output of the algorithm. The pseudocode of the entire algorithm can
be found below.

procedure SpringPlay
begin
Initialize all node principal processors
to the 1st processor;
Initialize all node states to the
center point;
ActualSchedule = List Schedule;
BestSched = not valid;

Limitl := 1.5 * number of nodes;
Limit2 := 2.5 * number of nodes;
dt := 0.001;

maxdF := 0;

ActLimit := Limiti1;
IterationWithoutChanges := 0;
IterationCount := 0;
do
Changelist := empty list
for all nodes do
F:= Calculate force;
dV := F % dt;
Modify node state;
if principal processor changed then
ActualSchedule = List Schedule;
add changing to Changelist;
endif
M=M=*x0.9+F x0.1;
endfor
Update dt according to M;
Increment IterationCount;
if Changelist == empty list then
Increment IterationWithoutChanges;
else
IterationWithoutChanges := 0;
endif;
if IterationCount <= Limitl
ActLimit := 5;
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elseif IterationCount <= Limit2

ActLimit := 1;
else

ActLimit := 0;
endif;

if IterationCount > Limit1l
ActFinalSchedule = FinalSchedule;
if ActFinalSchedule is better than BestSchedule
BestSchedule = ActFinalSchedule;
endif
endif
until ( IterationWithoutChanges > ActLimit );
if BestSchedule is not valid
BestSchedule = FinalSchedule;
endif
/* Output of the algorithm */
return BestSchedule;
end;

The force system consists of 4 different components, each represents a
certain property of the schedule.

F,=F'+ FC 4+ FP 4 pA (2.18)
In the following sections each of these force components will be detailed.

2.4.2 Execution time minimizing component

This component introduces a preference that the principal processor of a
node be the one on which the node achieves the shortest execution time.
For this purpose forces are created toward each fixpoint which mean “how
strongly” the node would like to be on that processor. We define now a
shorthand notation for the unit vector pointing from the node state to a
processor fixpoint.

0 if | FP, -V, |=0
€np = (F?@——iz)

= = else
|FT%'_V%|
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The force affecting node state n from processor p is :

—

Fr =Dl é., (2.19)
where Dgp is the coefficient and it is multiplied by the unit vector toward
the processor.

P
DI = Y i (2.20)

i=1i#p

The D;ap coefficient is defined in a bit complicated way so that it have time
dimension. It is the sum of all the components in the execution time vector
but the execution time on the processor for which it is calculated which gives
the result that the coefficient of the processor on which the node achieves
the smallest execution time will be the biggest. This will try to pull the node
state to that processor. The final force from this component is the sum of
all forces with the same n index.

P
FI'=>"FT (2.21)
p=1

2.4.3 Communication cost component

This term adds forces which try to influence the actual schedule so that
the communication cost be minimal. Let C), denote the number of nodes
connected - both inputs and outputs - to node n and N, ; will stand for the
node with connection number 7 connected to node n. We will use C),; to
refer to the ¢th connection of node n. We will use the following shorthand
notation : T}, ,; is the time required for communication between processor p
if node n is scheduled on it and the principal processor of node N, ;. If N, ;
consumes the result of node n T),; is the time of the send activity on p,,
else it is equal to the time necessary for receiving the output of NV, ; from its
principal processor. An example for explaining the notations can be seen in
figure 2.12.

The communication forces are defined similarly to FZ. For each con-
nection of node n forces are added toward each processor which symbolize
how necessary it would be to put the node onto that processor because of
the communication cost with its neighbours. FnC:C is the force caused by
connection C,; toward processor p.

n,tsP
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Figure 2.12: Communication cost notations

Flop=Dic (2.22)

n,iHP TL’p

ncn 27p Z T 7]72' (223)

J=1,5#p

ZZ oot (2.24)

1=1 p=1

The meaning of Dgcm , in Eq. 2.23 is similar to the constant defined in Eq.
2.20, its value is bigger if the communication cost to processor p is smaller.

2.4.4 Parallelism optimization

The two previous terms assure that nodes tend to be placed on processors
on which they achieve the lowest execution time while minimizing commu-
nication costs. To get Springplay to strive toward solutions where the total
execution time is minimized by exploiting parallelism in the algorithm to be
scheduled we introduce a new term. First we define our notion of parallelism
of node n. In our definition parallelism is the sum of the occupied time of
all the other processors in the time frame of node n. This value is used to
express if there is a possible amelioration of the actual schedule by exploiting
the possible parallelism better. Figure 2.13 illustrates the definition. In the
following we will denote this parallelism quantity calculated for node n in a
schedule S as 2", 5. Moreover, we define the amount of parallelism of node
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n with respect to processor p as the occupied time on processor p in the

time frame of node n and we will denote this quantity as {°*" .. For example

n7p7
] p3 g = 2 in Figure 2.13.

P1 N1 Parallelism for Nl(taalr,s)
P2 N2 ‘ 5
P3 N3 ‘ 2
P4 4 < + 2
9
¢ P
N1,P4,S

Figure 2.13: Measuring parallelism in the graph.

The force calculation is based on the “ideal parallelism” measured in
ASAP schedule. The algorithm makes an ASAP schedule first using the
1%59? = min({;) as node execution time then calculates the parallelism in
this schedule. Ideal parallelism is defined as the following :

sivar _ tiasap AL Agap < P 13%0F (2.25)
" P -125%P  otherwise '

FEq. 2.25 says that the ideal parallelism is measured in the ASAP sched-
ule but limited to the amount of parallelism that can be exploited in the
target hardware. This limitation is imposed by the number of processors

(P) available.

When calculating FF’ force the parallelism in the actual schedule is cal-
culated and compared with #7*". If the actual parallelism is bigger than a
givent percent (called ezploitation factor, 7. ) of the ideal one, we strengthen
the node’s membership to its principal processor, else we introduce forces
which pull the node state to other processors. The value of the exploitation
factor determines, how good parallelism exploitation will be accepted. The
closer it is to 1, the better schedules the algorithm produce but its stability
deteriorate. We found that 1. = 0.9 is a good compromise between stability
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and schedule quality.

par ipary = ¢ ,par imar
(tn,ACT — 10" )Enp, if 2, gcr > neli?
oo P € _ lpa'rACT
n ipar par — P P, :
Z(tn — thCT)em:,(—t6 ) otherwise
p=1 n,p
(2.26)
par ¢ ,par e
tlp‘“" — tn,p,ACT if tn,p,ACT < tn,p (2 27)
np, ACT [ else

Eq. 2.26 expresses that depending on the parallelism exploited the node
state is pulled to p, or pushed to other processors. This latter force depends
on how much time is available in the given time window on other processors,
it is 0 if the time window has already been filled by other tasks and bigger
if there is unoccupied time on that processor. In Eq. 2.27 we limit the time
we demand on other processors to the execution time of node n on that
processor.

2.4.5 Anchoring nodes

Race situations can exist in some cases when the schedule alternatives are
equally good. Let us imagine for example one task and 2 processors and equal
task execution times on both processors, in this case we are free to schedule
the task on any processor (Fig. 2.14). Race situations cause instability in
Springplay. To prevent this, F4 component is added which introduces slight
preference toward the principal processor. The amount of this preference is
controlled by the anchoring factor (n,).

FA =&, ,(namin(T})) (2.28)
During the experiments n, = 0.1 gave good stabilizing effect without dete-
riorating the quality of the final schedule.

2.4.6 Fixpoint generation

Generating fixpoints needs solving a simple geometrical problem. Given a
P — 1 dimension space, we want P points so that the distance between each
pair is 1. The following simple algorithm can generate the solution from the
P — 1 point case.

Let us denote the coordinates as elements of a P — 1 dimension vector :
[c1,¢g...,cp_1] and ¢; ; will mean the ith coordinate of the jth point.
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Figure 2.14: Race situation in a DAPEG

When we generate the new point we exploit the fact that the P — 1 point
problem could be solved in P — 2 dimension so the P — 1th coordinate of the
points coming from the P — 1 point solution is necessarily 0. Now we have
to calculate a Pth point whose distance from all the old points is 1. This is
done by generating a set of well-known distance equations for the new point.

(cLp—c1p)*+eap—cap)'+.t(cporp—cpo1p)’ = 1,1 p < P—1 (229)

Note that cp_;, = 0. Systematically subtracting the 2 < p < P—1 members
of this equation set from the p = 1 element we get

P-2
2 2
Z:(Ci,p — 1) P_g
=1 5 =Y (cip—ein)eip,2<p< P -1 (2.30)
=1

which gives us P — 2 linear equations for ¢; p,1 < ¢ < P — 2. The missing

cp_1,p coordinate can be yielded by substituting the known ¢; p components
into Eq. 2.29.

2.4.7 Complexity

The complexity of Springplay is O(N? + N2P) and it is derived as follows.
Each force component requires O(P) operations (weighted sums from 1 to
P). Each iteration requires the evaluation of all the force components for
each nodes so one iteration costs O(N P). The maximum number of itera-
tions in the current prototype is 2.5 - N so the maximum number of force
computations is O(N2P). After each node state modification there is a pos-
sibility that the list scheduler is invoked which is an O(N) algorithm. In
worst case the list scheduler is invoked after each node state modification.
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As there are 2.5 - N? possible node state modifications this component can
have O(N?) complexity. So the total complexity is O(N?P + N?).

2.4.8 Performance evaluation

We made comparative tests between Springplay and two other algorithms:
a Branch&Bound type algorithm described in [Green87] and the DLS algo-
rithm [Sih93a] which is a Generalized List Scheduler class method. We chose
these two ones because of their support of heterogeneous architectures which
seems to be a less-investigated topic according to our bibliography research.
Further problem was that the system model of these two algorithm was dif-
ferent to ours regarding the cost of communication : [Green87] considers no
communication cost while [Sih93a] supposes dedicated communication hard-
ware. We forced our - more realistic - system model to these algorithms
which caused runtime problems to the B&B method ameliorating the qual-
ity of the solutions it produced at the same time. In the case of the DLS
the differences of the system models have less importance. In the following
we use BBOPT and BBH2 to refer to the Branch&Bound algorithm with
two types of heuristic functions in [Green87] and DLS to denote the method
presented in [Sih93a].

The prototypes of the algorithms were realized in LISP. To counterbal-
ance the slow execution speed of Lisp we allowed a generous amount of
runtime before terminating the computation. This caused problems only for
the B&B type algorithms, the exponential growth of computation require-
ment resulted in inacceptable run times over 25 nodes. For this reason more
graphs were generated with smaller node numbers and less processors.

The algorithms were tested with 80 randomly generated data-flow graphs
where the number of the nodes was between 16 and 50 and the node execution
times were in the [1,11] interval,the number of the processors was 4 and
5. Instead of randomly generating the communication costs we used four
communication models: a totally interconnected model with small cost, the
same with heavy cost and a chain-like model (each processor is connected
only with two neighbours) with small and heavy communication costs.

As all the methods tested use some kind of heuristic, their results show a
significant variance, “good cases” (where the heuristic ruler matches well to
the problem) and “bad cases” can be found for any of the four algorithms.
For this reason, we present our results in the form of histograms and express
the performance of the algorithms by means of average. The histograms
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alg/SP results(%) | worst | best | average
BBOPT -44.12 | 38.46 3.39
BBH2 -37.75 | 69.44 9.7
DLS -32 137.5 46.8

Tableau 2.2: Performance comparation of Springplay with the reference al-
gorithms

2.22,2.23,2.24 compare an algorithm pair by calculating the ratio

tsched,algl

100% — 100%
tsched,alg?

of schedule lengths produced for the same input graph and by representing
the distribution of this expression for the ensemble. There are less samples in
the case of BBOPT and BBH2 ensembles because they could not terminate
the computation for bigger node numbers. It must be noted that in spite of
claims in [Green87], BBOPT heuristic function can significantly overestimate
the finish time of a partial schedule thus it cannot always find the optimal
solution. This is the reason why Springplay could produce better results
than BBOPT in numerous cases.

In table 2.2 we compare the worst, the best and the average performance
ratio for each pair. The advantage of Springplay against BBOPT is 3.4%,
against BBH2 it is 9.7%. The advantage is more significant against DLS :
the method presented here is 46.8% better and there is an important number
of cases where Springplay is 80-100% better.

The significant performance advantage of Springplay is demonstrated on
an example signal-flow graph (Figure 2.15). The graph was chosen among
the randomly generated test set. Figures 2.16, 2.17, 2.18 and 2.19 shows the
schedules generated by BBOPT, BBH2, DLS and Springplay, respectively.

e Springplay does not schedule the longest path on one processor. The
“critical path” techniques loose much of their efficiency on heteroge-
neous environments.

e We supposed asynchronous buffered communication model in this ar-
ticle. It means that send activities are guaranteed to be scheduled
before or paralelly with corresponding receive operations but no other
restrictions are imposed.
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Execution time vectors :

N1:[6,9,39] N6:[8,7,83]
N2:[7,151] N7:[8,4,11,8]
N3:[9,389] N8:[9,1,7,4]
N4 :[11,7,2,5] N9:[10,9,1,5]
N5:[9,34,8] N10:[10,6,6,7]

Figure 2.15: The example DAPEG

e Springplay not only generated the shortest schedule but used less pro-
cessors than BBOPT and BBH2.

Figures 2.20 and 2.21 shows the convergence process in two cases. For
generating these plots the original algorithm was slightly modified, after each
iteration the final schedule routine was called and the length of this schedule
is shown on the diagrams. This modification does not affect the parallelism
optimization forces, they are calculated from the actual schedule generated
by the internal list scheduler as before. Figure 2.20 shows the convergence
in the case of the example DAPEG. The algorithm finds the solution in one
step, the following steps are generated to trigger the stopping condition. In
figure 2.21 the schedule length changes are shown in the case of a 20 node
DAPEG chosen from the test set where a limit cycle can be observed at the
end of the convergence process. This shows that the heuristic rule does not
guarantee that the schedule length will not increase. The simple stopping
conditions used during the tests does not consider this fact, we intend to
develop more exact stopping criterias.

2.5 Springplay with enhanced communication model

So far we used a totally interconnected model and we supposed that the
topology of the processor connections can be fully modelled by communi-
cation cost constants. This assumption is only approximatively correct. If
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Figure 2.17: Example schedule by Branch&Bound H2
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Figure 2.18: Example schedule by DLS
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Figure 2.19: Example schedule by Springplay

Figure 2.20: Convergence in the example case
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Figure 2.21: Convergence in a 20 node case
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Figure 2.23: Distribution of BBH2/SP results, 43 samples
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Figure 2.24: Distribution of DLS/SP results, 80 samples

more processor pairs share the same communication channel (for example
bus-like structures), collisions can occur that increase the communication

time significantly.

T

Collision!

Bus

Send Receive Send Receive

N1 N2 N3 N4

P1 P2 P3 P4 Bus
P1 P2 P3 P4

Figure 2.25: Communication activity collision on a bus

Fig. 2.25 depicts a case when two communication activity pairs collides
on a bus shared among four processors. The bus arbitrer will delay one of
the activity pair effectively doubling the communication time in that case. If
the scheduler algorithm does not take into account this collision, it will un-
derestimate the communication time that results in big differences between

the calculated and real schedule lengths.

Other problem is the effect of routing. If the target architecture is not
totally interconnected (processors are connected only with certain other pro-
cessors and not with all the processors), it might be necessary to pass infor-
mation between processors that have no direct link with each other. In this
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case the data packet must be routed through other processors till we get to
the final destination.

For correctly modellizing the effects above we have to consider communi-
cation links as resources (similarly to processors) and we have to schedule the
activities on them as on processors. We will call a physical communication
link between a certain processor pair channel. Each possible communicating
processor pair is assigned a channel on which that pair accomplishes its data
transfer. Channels have activity scheduling similarly to processors, a data
transfer in progress occupies the channel for the duration of the activity and
no other activities can be scheduled during that time.

We suppose static routing (fig. 2.26) as done in SynDEx. Static routing
means that before the scheduler algorithm is launched, we make the target
architecture totally interconnected by finding a route between any two pro-
cessor pairs. This simple scheme cannot exploit multiple paths connecting
the same processor pair but it is easy to implement and in many practical
cases (dedicated signal-processing systems) there are no multiple paths in
the architecture as it would introduce extra cost. A routing table is con-
structed that store for each processor pair the path through which the data
packet can be passed.

o o
ol oXe o
od o

Routing table section:  P1->P3: P1->P2; P2->P3
P3->P1: P3->P2; P2->P1

Figure 2.26: Static routing

Algorithms that can handle correctly the channel collision and routing
effects are rare, they are mostly of list scheduler class. The technique used
by these algorithm is called tentative routing. It means that the algorithm
actually measures the necessary communication time in a partial schedule.
It supposes that a certain node will be put to a certain processor, routes
and schedules all the necessary communication activity on the channels and
processors, measures the resulting communication time then removes these
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communication activities. It will use the communication time it got for de-
ciding, which processor will be allocated for the node and after the decision
it will finally schedule the communicaction activities and the node itself on
the chosen processor updating the partial schedule. This technique can be
easily immplemented in a list scheduler as this algorithm advances always
according to dependency constraints so we always have a valid partial sched-
ule. The version of Springplay presented in section 2.4 takes the nodes one
by one in an arbitrary order so partial schedule is not available all the time.
For this reason the communication time factors in section 2.4.3 cannot be
calculated in the enhanced communication model.

In this section we will present a version of Springplay that is adapted to
this model. First let us define the model itself.

¢ Beside processor activities we will also define channel activities. Chan-
nels represent physical communication links, one channel belongs to
each connected communicating processor pair. Channel activities are
scheduled similarly to processor activities; a communication activity
being accomplished on a channel occupies that channel for the dura-
tion of activity.

o We use static routing, the routing path between any processor pair is
calculated before the execution of the scheduler.

e Communication activities reserve no time on the processor. In con-
trast, they reserve the appropriate duration on the channel.

o If a certain communication activity needs routing, the later channel
activity in the routing list can start at the end of the previous channel
activity and no sooner (fig. 2.27).

The main modification in the Springplay algorithm principles is that
the node state modification phase is integrated into the final list scheduler.
The list scheduler is modified so that after having chosen the candidate
node, it calls the node state modification routine that calculates the forces,
modifies the node state, calls the internal list scheduler if necessary. Then
the node will be scheduled on the processor determined by the node state.
Descendants are added to the ready node list if they are ready to execute
then the algorithm proceeds with the next candidate. This turn of node
state modification is finished if the ready node list is empty.

As we are inside a list scheduler loop, we always have a partial schedule,
we can use tentative routing as in a list scheduler to calculate 77, ;; values
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Figure 2.27: Channel activities while routing P1-;P2; P2-;P3

in eq. 2.23. The solution above allows us to combine the list scheduler
approach (so a partial schedule is always present) with the “converging”
Springplay approach. The modified Springplay algorithm adapted to the
enhanced communication model (RSP) is the following in pseudocode.

procedure RSP
Naive Schedule;
BestSchedule = Actual schedule;
loop 4*N times
Initialize the ready node list to the input nodes;
while ready list not empty
Evaluate the earliest possible start time of
ready nodes;
Select candidate;
Modify node state of the candidate;
Recalculate M, dt;
Call internal list schedule if changement of
principal processor;
Schedule candidate on its principal processor;
Add ready nodes to the ready list;
end while;
if ActualSchedule is better than BestSchedule
BestSchedule = ActualSchedule;
end loop;
/* Output of the algorith is in BestSchedule */
end;

RSP was compared with the SynDEx [Sor94] and DLS [Sih93a] list sched-
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alg/RSP results(%) | worst | best | average

RDLS (Light) | -11.06 | -1.88 | 8.8%
RDLS (heavy) -35.87 | 1.07 | 31.03
RSYN (light) | -16.90 | 2.16 | 22.40

RSYN (heavy) 1.33 | 40.55 | 105.17

Tableau 2.3: Performance comparation of RDLS and RSYN with RSP on
the homogeneous set

ulers whose original versions were prepared for routing and channel collisions.
To make distinction between the SynDEx and DLS prototypes used with the
simplified communication model and these ones with the routing extension,
we will denote the routing versions as RSYN and RDLS.

First we tested RSP on a 10-member set of randomly generated homo-
geneous graphs. The hardware model we used was a 4-processor one where
the processors were connected only with two neighbours in a chain-like struc-
ture. (fig. 2.28) The communication cost of the three channels were 0.1 (light
cost) and 2 (heavy cost). Table 2.3 shows the best, worst and average per-
formance ratios and figures 2.29, 2.30, 2.31, 2.32 show the distribution of
results in the four cases. The performance of RSP is worse now with some
percent than without routing and it puts RSP at the same quality level
as RDLS. As RDLS needs much less calculation, RSP is not recommended
in the homogeneous case. It is remarkable that RDLS and RSP produces
significantly better results than RSYN in the “heavy” communication cost
case. We think that this is the result of descendant consideration in RDLS

and RSP.

Figure 2.28: Hardware model used during the experiments

As RSYN does not support inhomogeneous architectures, RSP was com-
pared only with RDLS in the inhomogeneous case where the same target
hardware was used on a 10-member randomly generated graph set. The re-
sults are depicted in table 2.4 and figures 2.33, 2.34. We can see that despite
the performance degradation of Springplay, RSP still produces considerable
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Figure 2.29: Histogram of the performance ratios, homogeneous case, RDLS
light
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Figure 2.30: Histogram of the performance ratios, homogeneous case, RDLS
heavy
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Figure 2.31: Histogram of the performance ratios, homogeneous case, RSYN
light
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Figure 2.32: Histogram of the performance ratios, homogeneous case, RSYN
heavy
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alg/RSP results(%) | worst | best | average
RDLS (light) 87 | 2887 | 47.28
RDLS (heavy) -6 | 15.53 3

Tableau 2.4: Performance comparation of RDLS with RSP, inhomogeneous

set

performance advantage (28 and 15%).
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Figure 2.33: Histogram of the performance ratios, inhomogeneous case,

RDLS light
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Figure 2.34: Histogram of the performance ratios, inhomogeneous case,

RDLS heavy
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In this section we presented a version of Springplay that has been adapted
to a more exact communication model. As this extension introduces more
nonlinearity, Springplay falls more easily into local minimas so its perfor-
mance necessarily deteriorates. We showed, however, that despite this per-
formance degradation RSP still produces better results than its competition.

2.6 Pipelined Springplay algorithm

The function to be minimized by the scheduling can be
1. The latency between the arrival of the input data and response.

2. The input data period time. In this case we are not interested in the
latency but we want to feed new data into the system as fast as possible.

The first requirement generally arises in control system when the stimulis
can be quite random but the response must be quick. The second approach
can be found frequently in DSP systems where data arrive at fixed sampling
frequency and arbitrary delay can be introduced by the processing system
as long as this delay is constant.

When scheduling onto a multiprocessor system one exploites spatial and
temporal concurrency [Hoan93] as shown in Fig. 2.35.

Spatial concurrency (parallelism) Temporal concurrency (pipelining)
Figure 2.35: Temporal and spatial concurrency in a signal-flow graph

Spatial concurrency (parallelism) means that tasks can be executed on
different processors without breaking the dependence constraints. In the case
of temporal concurrency (pipelining) the graph is cut into chains of stages
with every stage processing the results of the previous stage. The task of a
pipeline scheduler is to exploit both spatial and temporal concurrencies to
achieve minimal pipeline stage time.
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The success with the Nonpipelined Springplay scheduler (SP) gave us
the idea to extend Springplay for supporting heterogeneous pipelined re-
alizations. In the following we present the Pipeline Springplay scheduler
(PLSP) and we demonstrate its performance on a few examples. As many
details are common in SP and PLSP, we will focus only on the differences.

We introduce only one new item to the system model: the scheduler can
create pipeline stages anywhere in the graph by inserting delays into a graph
branch breaking the dependence constraints this way. It must be guaranteed,
however, that the delay inserted be balanced for each input node of every
operation. (Fig. 2.36)

Legal delay placement

Figure 2.36: Delay insertion constraints

2.6.1 Changes in the algorithm principles

One of the biggest difference between the non-pipelined SP and the pipelined
PLSP is the way the nodes are scheduled. In SP precedence constraints are
always respected so the start time of any node must be bigger or equal than
the maximum finish time of its every predecessor. In the case of PLSP a node
is scheduled as soon as possible on its prescribed processor and a dependence
constraints can be broken. Fach time a node is scheduled earlier than its
predecessor an implicit delay is created because the input of the node must
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come from previous iteration of the predecessor (Fig. 2.37).

O .
—
@@

N1 N3

Time

Origina DAPEG Partial schedule before placing N4 (without communication)

P1 N1 N3 ®\
ey s [—(w)

Pipelined schedule Resulting DAPEG of the pipelined schedule

Precedence constraint was broken
between N3 and N4

Figure 2.37: Implicit delays in a pipelined schedule

Before scheduling a node the communication activities and explicit delays
are placed. The receiving communication activities are put just before the
node to be scheduled, the send activity pairs are placed as near as possible to
their corresponding receive activities. Figure 2.38 demonstrates the scheme.

P1 N1 N2 P1 N1 N2 R N5
P2 N3 N4 P2 N3 S N4
A partia schedule Inserting N5 into the partial schedule which
needs data from P2

Figure 2.38: Communication scheme in PLSP

As it was mentioned before delays inserted by the algorithm must be
balanced (Fig. 2.36). It can happen that implicit delays resulting from
pipelining are not balanced, in this case explicit delay operations must be
placed. The list scheduler in PLSP tracks the delay levels by means of the
pipeline stage number (PSN). All input nodes are assigned a 0 PSN level.
Each time a dependence constraint is broken the PSN on that branch is
increased by one. The successor node gets the maximum PSN of all its
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inputs. (See fig. 2.39)

Explicit delay to be inserted

Pipeline stages

Figure 2.39: Calculating pipeline stage numbers

An explicit delay is inserted into the branch if the PSN on that branch
is smaller than the PSN of the operation it feeds. The length of the delay is
the difference of the PSN of the operation and the PSN of the input branch.
PLSP has a built-in mechanism which considers the cost of the explicit delays
and tries to eliminate them.

Fach time the list scheduler is invoked, the length of the actual schedule
is compared against the best schedule produced so far. The best schedule
is updated to the actual schedule if the actual schedule is shorter. The
pseudocode representation of PLSP can be seen below.

procedure PLSP
begin
Initialize all node principal
processors to the 1st processor;
Initialize all node states to
the center point;
ActualSchedule = List Schedule;
BestSchedule = ActualSchedule;

Limit := 4.0 * number of nodes;
dt := 0.001;
maxdF := 0;

ActLimit := 10;
IterationWithoutChanges := 0;
IterationCount := 0;
do
Changelist := empty list
for all nodes do
F:= Calculate force;
dVv := F * dt;
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Modify node state;

if principal processor changed then
List Schedule;
add changing to Changelist;
if ActualSchedule is shorter than

BestSchedule
BestSchedule = ActualSchedule;
endif
endif
M=0.9% M+ 0.1 xF;

endfor
Update dt according to maxdF;
Increment IterationCount;
if Changelist == empty list then
Increment IterationWithoutChanges;
else
IterationWithoutChanges := 0;
endif;
if IterationCount > Limit
ActLimit := 0;
endif;
until
(IterationWithoutChanges > ActLimit );
return BestSchedule;
end;

The force system consists of 4 different components, each represents a
certain property of the schedule.

F,=F' + F¢ + FB 4 FP (2.31)
1. ji? execution time minimizing component introduces preference to-

ward processors on which execution time is shorter. This component
is calculated in exactly the same way as in SP.

2. FnC communication minimizing component optimizes the communica-
tion costs. It is same with the corresponding SP force as well.

3. fi? processor balance component which tries to balance the processor
loads.
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4. F;? explicit delay elimination component which moves out the resolver
system from states where the cost of explicit delays is excessive.

In the following sections we detail the two new force components.

2.6.2 Processor balance component

This component assures that the algorithm strives for schedules in which
the length of the schedule is minimal by moving nodes from more heavily
loaded processors to less used ones. This is achieved by creating forces
toward each processor which is proportional with the difference between the
maximal occupied time and the actual occupied time of the processor. Let
us define ¢;° occupied time on processor p as the sum of the execution time
of all operations except for the communication activities (i.e. operations and
explicit delays). We will define the maximal occupied time as the following

lrae = maz(ly®),1<p < P

max
The processor balance component can be imagined as a “pression” which
pushes the nodes to less loaded processors. The force exerted to node n
toward processor p is :

FB = (15, —19¢)e, , (2.32)

maxr

It means that the node is placed more possibly to less loaded processors.
The resulting force is the sum of this component for every processor :

P
FB=%N"FB (2.33)
p=1

Originally we were experimenting with a force function which considered
that if a node is moved to other processor the ¢;° of that processor will be
increased by the execution time of the node on that processor. This force
function, however, resulted in a too stable system which was prone to stick
in local minimas. The force function used in the final version introduces
deliberate instability so that the algorithm can move out from these traps.

2.6.3 Explicit delay elimination component

As it was discussed in section 2. explicit delays must be placed if the implicit
delays resulting from pipelining are not balanced. Depending on the system
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model delays can be considered costless or having a certain cost. By our
opinion explicit delays do have cost, for example in a software realization
the routines storing and retrieving data to and from the delay data field
need certain excution time and in a hardware realization the delay occupy
die area. PLSP has an option so that it strive for explicit delay elimination.

The delays are eliminated by moving nodes to other processor which are
most possibly the causes of the explicit delays. This is accomplished by
creating forces based on a “tag” variable denoted as !%9. The list scheduler
also calculates the tag variables. At the beginning each node’s tag variable is
initialized to 0. Each time an explicit delay is inserted the cost of this explicit
delay is propagated backward to each predecessor of the input branch into
which the delay is placed. Fig. 2.40 illustrates how the tag variables are
propagated.

2-tap explicit delay inserted here

1-tap expl. delay

inserted her
0

The numbers near to the nodes mean node tag variables
Figure 2.40: Illustration for the tag variable propagation

The routine is the following :

procedure TagInput(node,tag)

begin
if node’s actual tag variable > tag
return;
else
for each input of the node
node tag variable := tag;
TagInput(input node,tag);
end for;
end;

This routine is called with the node whose output the delay is placed to
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and the cost of the delay. The cost of the delay is the execution time in the
case of the software realization. The following notation will be used: C(n)
cost function means the cost of a n tap delay. It can be the execution time
of the delay in software realization (can be 0 or a certain cost depending on
the code generator). With this notation the delay elimination component is

P
FP= Y —c(t)e,, (2.34)
p=1,p#pn
The solution presented here tries to mark the nodes which are considered
responsible for the creation of the explicit delays and moves them to other
processors.

2.6.4 Results of PLSP’s testing

We have realized PLSP in a prototype version in Lisp language to test and
tune the ideas developed. PLSP was tested on a variety of example DAPEGs.
In figures 2.41,2.42 a 2-stage FIR lattice filter and the schedule made by
PLSP can be seen. In this case the target system is homogeneous. Fig. 2.43
shows the DAPEG of the resulting schedule.

The length of the actual schedule during the execution is depicted in
figure 2.44. We changed our original concept in which we supposed gradual
improvement of the schedule length, now we expect no convergence but
rather we pick the good quality solutions from the solutions generated. It
must be noted that the schedule length can grow so the algorithm can escape
from local minimas.

The pipeline stages created by the algorithm are the following :

1. N1,N2,N3,N6
2. N4,N7,N9
3. N5,N10

4. N8,N11

The prototype scheduler could not consider that N2 and N7 are actually
delays so they were scheduled as simple nodes.

Figure 2.45 shows the resulting schedule if the target is heterogeneous.
The input DAPEG is the same as in figure 2.41 but the execution time of
nodes N3, N4, N8 N9 (multipliers) is 1 only on processor 1, on processors
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2,3,4 it is 4. The length of the actual schedule is shown in figure 2.46 and
the pipeline stages are :

1. NI,N2
2. N3,N4,N6,N7
3. N5,N9

4. N8,N10,N11

Finally we present the schedule generated by PLSP in the case of the ex-
ample DAPEG in [Hoan93]. This example is used in [Hoan93] to demonstrate
that the algorithm described there can consider parallelism and pipelining
at the same time. Figure 2.47 shows the DAPEG and in figure 2.48 the
schedule generated by PLSP can be seen. PLSP generated the same stage-
time bound as the algorithm in [Hoan93]. This shows that PLSP has the
same capability of exploiting parallelism and pipelining concurrently. As the
cited article considers explicit delays costless, we switched off explicit delay
scheduling for this example.

Execution times (N1-N10) : 1

Communication scheme : totally interconnected, data transfer time of one data unit : 0.5

Figure 2.41: DAPEG of the FIR Lattice

2.7 Conclusion on the Springplay algorithms

We have presented a new scheduling method which try to overcome the
problem imposed by the local decision making in heuristic algorithms. An
application of this idea was investigated and the results are promising. Dur-
ing the experiments Springplay produced slightly better solutions in O(N?)
computational complexity as B&B in exponentional complexity. The tests
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Figure 2.42: FIR Lattice schedule by PLSP
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Figure 2.43: DAPEG of the pipelined schedule

Figure 2.44: Length of the actual schedule during the execution
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Figure 2.45: FIR Lattice schedule by PLSP in the inhomogeneous case
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Figure 2.46: Length of the actual schedule during the execution in the inho-
mogeneous case
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Figure 2.47: DAPEG of the parallelism/pipelining tradeoff example
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Figure 2.48: Schedule generated for the parallelism/pipelining tradeoff ex-
ample

revealed the advantage of global optimization over local decision making as
well. Springplay offers good-quality solutions for the heterogeneous schedul-
ing problem for which there are not so many existing algorithms.

The problems with the Springplay approach are originated from the fact
that it is not proven. Experiences with the neural networks show that such
strongly nonlinear systems are very difficult (if not impossible) to prove. The
effectiveness of this algorithm is shown only by statistical analysis. There
are still several important questions to answer : stability, convergence to
solution and local minimas. Despite its good performance in average, there
were few cases when Springplay produced bad quality results. We intend to
examine thoroughly these cases, refine the heuristic rule and the structure
of the resolver system.
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Chapter 3

Rafael SFG compiler

In this chapter we will present the SFG compiler called Rafael. The goals of
the Rafael project are the following:

o Create an SFG compiler that can facilitate the task of prototyping
DSP algorithms on multiprocessor signal processing system

e Rafael should require small computing resources so that it can be
hosted on smaller and cheaper computers

o As we work with all kinds of DSPs, Rafael should support heteroge-
neous target systems

o Considering the fast development in the signal processor industry, the
code generator layer should be easily reprogrammable so that new
DSPs can be included by the user

In the following we present first the most important SFG compilers then
we will deal with the user model and the internal structure of the Rafael
system. In section 3.4 we compare our system with the presented ones then
conclusions are drawn.

3.1 Existing SFG compilers

A number of block diagram-based design systems exist. We have chosen
three of them for several reasons. Many ideas of the structure of Rafael was
taken from the now historical Gabriel system (section 3.1.1). Ptolemy (sec-
tion 3.1.2) is the most comprehensive, most flexible signal-flow framework

81
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which has huge impact on the field. SynDEx is a relatively small system
but it is interfaced with the SIGNAL language and critiques on the SynDEx
execution scheme influenced greatly the Rafael algorithm model.

Nevertheless, we have to mention here the commercially available DSPlay
(Burr-Brown) and SPW (Signal Processing Workstation) (Comdisco) sys-
tems. DSPlay is PC-based, it can simulate the input block-diagram and can
generate code for the AT&T DSP32. The Comdisco system started as a
simple simulator but actually it is able to produce highly optimized code for
almost all the DSP types and can even generate circuit description. As of
June 1994 the partitioning on multiprocessor DSP system must have been
done by hand.

The Cathedral system [DeMan86, Lann93] devoted to circuit synthesis
features SFG partitioning-scheduling but it uses the Silage functional lan-
guage [Gen90] as its input.

Ritz et al. presented a block diagram oriented tool called DESCARTES
[Ritz92, Ritz93] in which they introduced the idea of scalable synchronous
data flow (SSDF'). SSDF extends the usual SDF approach with the blocking
factor NV, attached to each block in the schedule. Each time the block is
invoked, its assigned operation is executed N times so it consumes N - W),
tokens from its input arcs and produces Ny - U, tokens on its output arcs af-
ter each invocation. (see section 1.2.1 for discussion of SDF') This approach
try to overcome the overhead of register-memory operations if an atomic
operation is executed only once. For example an adder must load both of its
arguments to registers, perform the addition then store the result. If we exe-
cute the same adder on a block of input samples producing a block of output
samples, we can exploit the pipeline capabilities of DSPs thus executing the
additions and register-memory transfers at the same time. DESCARTES
is capable of generating C or assembly source text from the block diagram
description and efficient algorithms were presented that for optimal blocking
factor calculation and for memory management. DESCARTES still cannot
handle the problem of run-time decisions.

3.1.1 Gabriel

Gabriel, presented in [Lee89b] was the first system capable of generating
executable code at Berkeley in which the synchronous dataflow paradigm
was implemented. Its predecessor, BLOSIM [Mess84] was only a simulator.
The terminology of BLOSIM survived in Gabriel and later in Ptolemy so we
present it briefly.
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The operations (or actors by the terminology of the Berkeley team) are
called stars. A cluster of stars forming an interconnected SFG is called
galazy. The final SFG can be hierarchical composed of a number of galaxies,
a set of interconnected galaxies is called universe. Gabriel has two level of
user interface. The graphical dataflow organization is used where appro-
priate: when describing the algorithm in dataflow format. The stars have
textual definition. This mixed description form helps to avoid the com-
mon problem of the graphical description systems which use graphical terms
where they are not handy.

Gabriel was realized on a Unix workstation under X-Windows. The
graphical interface was borrowed from a CAD project. This graphical editor
called VEM allows manipulating graphical objects, provides the standard
pan, zoom, copy, drag features. The edited SFG is then passed to the Gabriel
kernel which was implemented in Franz Lisp. This kernel schedules the graph
and simulates it or generates code according to the user’s wish. If code
generation is requested, the generated code is downloaded into the hardware
system where it can be executed. Figure 3.1 shows the structure of the
Gabriel system.

OCT CAD package Franz Lisp
VEM editor Gabriel kernel Star library
IPC
Kermit
Communication package

Real-time system MS-DOS system running real-time
system interface

Figure 3.1: Structure of the Gabriel system

One of the most striking feature of Gabriel is its programmable star library
which influenced a lot the database of our Rafael system. A Gabriel star
is described by a Lisp structure which looks like the following in a simple
example:
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(defstar log
(descriptor ’Computes the log of the input’)
(param base 10.0)
(input in)
(output out)
(function gabriel-log)

(def_function gabriel-log()
(output (quotient (log in) (log base)) out)
)

The star library entry has a header (marked by defstar) and a function
body (marked by def_function). The header structure stores information
about the inputs and outputs of the operation, a short textual description
for human readers and the parameters and their default values. The last
function entry points to the star function which gets executed whenever
the star is invoked. This star function can actually execute the operation
assigned with the star in simulation mode or can generate code for the actual
target processor in code generation mode. It is important to note that the
code generator star library is written in Lisp so a code generator function can
be quite intelligent when it decides on the text to be generated depending on
the parameters, size of the inputs, etc. Beside the star function, a Gabriel
star can have initialization/termination functions that are called once before
the first invocation and after the last invocation of a star. Processors are
described in a similar way creating Lisp lists that contain the target sys-
tem characteristics: number of processors, processor memory, special hard-
ware units connected to processors, communication channel characteristics
between the processors and communication code generator routines. The
Gabriel system is strictly homogeneous: there can be only one star library
in the memory.

The Gabriel system reads in first the source graph description and gen-
erates the schedule. It uses the algorithm in [Lee87] to construct acyclic
precedence graph from the synchronous dataflow graph (section 1.2.3) then
a simple list scheduler similar to that of Hu [Hu61] schedules this APEG
onto the target architecture. This scheduler does not consider communi-
cation cost and is suitable only for homogeneous architectures. When the
schedule is ready, Gabriel executes the star functions of the nodes one by
one. If the actual star library is for simulating the graph (in this case the
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schedule must be made onto one processor) this will actually execute the
graph producing simulation results. If the star library is designed for code
generation, invoking the star functions will result in generating code for the
target system. In this case the target system may contain multiple proces-
sors.

The Gabriel system has the following interesting features:

e It handles multiple sample rates which results naturally from its input
format, the synchronous dataflow graph.

o It has a second user level, the star library programming level in Lisp
which allows the user to create new stars easily and to add intelligent
optimization/code generation features to the existing star library.

The main weaknesses:

e It does not address the question of data dependent constructs, if-then-
else, case, etc.

o It does not support heterogeneous systems.
o Its scheduler cannot be considered efficient.

Nevertheless, Gabriel’s structure greatly influenced the design of the
Rafael software (hence the similarity of the names). Gabriel was phased out
by the Berkeley team in favor of a much more comprehensive framework,
Ptolemy which will be presented in the next section.

3.1.2 Ptolemy

Ptolemy introduced first in [Buck91] is rather a framework than a design
system, it allows mixing of multiple computation models. Its objective was
to combine descriptions so that complex systems can be designed hetero-
geneously. The aim of supporting heavily distinct computational models
was that each subsystem of a complex, bigger system can be designed, simu-
lated or prototyped in a model that is appropriate to that part of the system.
Ptolemy imposes very few assumptions about these models, practically there
is only one constraint: a model to be included shows itself to the Ptolemy
kernel as a functional block accepting tokens on its inputs and producing
tokens on its outputs.
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Ptolemy has a Lisp-like and a Tcl-based [Oust90, Oust91] textual and a
VEM-based graphical user interface which allows the easy manipulation of
graphs, input data and simulation/execution results.

Ptolemy is based on the principles of object-oriented programming [Buck94]
and these principles are carried through with big care in this system. Ptolemy
is implemented in C+4. The basic element of the object hierarchy is the
Block. The functionality of the Blocks are very similar to the star library el-
ements in Gabriel (section 3.1.1). Blocks support methods that allow blocks
to be initialized, started, killed. (see fig. 3.2). Blocks are connected with
Porthole objects that provide connection port for the object. The actual
connection is established through Geodesic objects which connect Portholes
to Portholes. Blocks create Particle objects which are passed through the
Geodesic objects to the Portholes of the receiving Block. Blocks can be orga-
nized into Galaxies. A Galaxy can embed other Blocks or Galaxies as well.
A whole application composed of Blocks and Galaxies is called Universe.

Blocks contain a go() method which include the functionality of that
block. When this method is invoked the Block in question examines its
Portholes for the presence of Particles, consumes them if the Block can be
fired and produces particles on its outputs. Depending on the computation
model “firing” can mean different activities ranging from actual computation
to code generation. The firing of the blocks is managed by the Scheduler
object which invokes the go() methods of the Blocks under its control.

Particle

- [ &

Porthole Porthole Portholé Porthole

Block : Porthole : Geodesic : Particle :

- initiaize() - initialize() - initiaize() - readType()

- start() - grabData() - numinit() - print()

-go() - sendData() - setSourcePort() - operator <<()
- wrapup() - setDestPort() - clone()

- clone()

Figure 3.2: Blocks, Portholes, Geodesic objects, Particles

The execution control of a group of Blocks (a Galaxy for example) is
controlled by the Target object that the Galaxy is attached to. Target is
responsible for all the activities concerning the execution of the Galaxy on
that Target: initialization of the hardware, setting up its operating mode,
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provide the scheduling, execute the scheduled Galaxy on the hardware and
shutting it down if necessary (fig. 3.3). Target will call its associated sched-
uler to control the execution order of the operations. This scheduler may
decide that certain portion of the input Galaxy be executed on an other
target. In this case it passes the Galaxy part to that target which in turn
will call its scheduler to execute it. This way the different characteristics of
different targets are totally separated.

Input Gm

Target
Scheduler o .
Partition of the input graph
Target2
Scheduler2

Figure 3.3: Schedulers and targets

A computational model includes a set of Blocks, Targets and their as-
sociated Schedulers. We use “computational model” in the sense that it
describes how Blocks interact with each other. An implementation of such
a model in Ptolemy is called Domain. Domains can be arranged into hi-
erarchies, in this case all the Blocks and Targets of an inner Domain can
be used in the outer Domain. Schedulers may belong to more Domains but
a Scheduler in the inner block is not necessarily valid in the outer block.
Ptolemy provides a mechanism so that a Block of a certain domain hide an
other Domain.

The actual Ptolemy implementation (as of version 0.5) specifies the fol-
lowing Domains.

SDF Synchronous Dataflow as introduced in Gabriel.

DDF Dynamic Dataflow domain [Denn80] in which Blocks are enabled by
data at their inputs that they may or may not consume and they
may or may not produce data at their outputs. Disadvantage is the
necessary run-time scheduling.
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BDF Boolean Dataflow (section 1.2.2).

DE Discrete Event when only the system state transitions are modelled.
Thor A Stanford RTL (Register Transfer Level) Simulator
MQ Message Queue

CP Communicating Processes

CGC C code generation in SDF model

CG56 DSP56000 code generation in SDF model

CG96 DSP96000 code generation in SDF model

Silage A functional language [Gen90]

Vhdlf Functional modeling in VHDL

Vhdlb Behaviorial modeling in VHDL

Sproc Code generation for the Sproc DSP in SDF model.

Ptolemy is a very comprehensive framework and its generality and ex-
tendablity results in more and more new domains. One of the latest develop-
ments is the integration of ESTEREL tools (separate domain has not been
presented yet however). The most frequent critique of Ptolemy is that it is
too “liberal” in the sense that it allows mixing of design styles that cannot
coexist well. The framework provides only the mechanism of coexistence but
it does not solve any compatibilty problems of the models which were mixed
in an application universe. It does not force the designer to follow a “good
design style”. For this reason Ptolemy itself is as good as the domains it
supports. The most comprehensive domain in Ptolemy actually is the SDF
domain which is supported by several code generators and simulators. As
more and more developers include their computational models in Ptolemy,
this situation is changing quickly.

3.1.3 SynDEx

SynDEx [Sor94] is a code generator environment designed to be interfaced
with the synchronous language compilers (section 1.3). It has a graphical
and textual user interface that allows users to construct the algorithm block
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diagram entirely in SynDEx. It is designed, however, rather to receive the
algorithm graph from a synchronous language compiler. Actually SynDEx
is interfaced in such a way with SIGNAL [Bour94] and work is under way to
create a common format for the SIGNAL, LUSTRE, ESTEREL languages
so that they can send the result of compilation to SynDEx or other code
generators. The algorithm model of SynDEx is the conditioned signal-flow
graph already presented in sections 1.3.3,1.3.4. It means that each node has
a clock it is associated to which results in a condition input for each node

(fig. 3.4).

Clock inpl Boolean
Operators
Clock inp2

Condition input

Dataoperation [~~~ """~ =

Datainputs Data output
Figure 3.4: Conditioned signal-flow graph

A node is fired if all its input variables (including the control variable)
has been produced by predecessor nodes and its control variable is true.
The scheduler considers the condition input dependency as any other depen-
dency: it is equivalent with supposing that each condition is true and each
node can be executed. This way the original conditioned signal-flow graph
is transformed to a synchronous signal-flow graph and static scheduling can
be used. The original conditioned signal-flow graph is thus partitioned into
a condition calculating part (which is unconditioned) and a data processing
part (which can be conditioned). It is the responsability of the SIGNAL
compiler (or the input graph designer) that a proper condition signal be
assigned to each node. The intermediary format (called Sisy) contains node
definitions :

(function add "calls" add "dt" 10 "i/o" integer 7zs 7’1’ !zsl)
and condition definitions that describe the clock dependencies :
(exec hadd/hs memory S add default2 defaultl)

This latter line says that memory, S, add, default2, defaultl nodes
should be executed only if the hs output of the hadd operation is true.
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The actual SynDEx implementation does not group the conditions. It
means that if 0OP1 and 0P2 have the same condition (C) and they are scheduled
one after the other, the following code will be generated :

if C then
0P1

endif

if C then
0P2

endif

SynDEx generates C code for the T800 transputer and TMS32C040 DSP.
The environment supports only homogeneous target systems. The actual
direction of its development aims heterogeneous targets as well.

The biggest problem about the SynDEx system is caused by the way it
handles the conditions. The code generator does not group operations sched-
uled one after the other with the same conditions into one if ... endif.
Other drawbacks are that SynDEx does not support heterogeneous architec-
tures and it can generate only C code.

3.2 Rafael basic structure

3.2.1 Major design considerations

The Rafael structure was designed according to the four main goals intro-
duced at the beginning of this chapter. The support of heterogeneous sys-
tems needed a flexible operation library or - even better - programmable
code generator module. Considering the code generator programmer’s con-
venience, compiled languages can be quickly eliminated because it would
need the recompiling and relinking of the code generator modules each time
the database is modified. A system constructed in this way would be much
more prone to system crashes as compiled languages allow great liberty in
manipulating the system resources. We decided that reprogrammable parts
of the code generator be implemented in an interactive, interpreted language.
As we intended to provide the possibility of important intelligence in these
modules (as they determine the quality of the code generated) we wanted to
choose a more powerful language. Considering the possible candidates we
chose Lisp because of the following advantages :
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o It is a very powerful language that allows run-time program creation
and it is equipped with eflicient database handling capabilities.

e Lisp interpreters are available in relatively small memory requirement
versions which fits well to the small computer (PC) we planned the
system to run on.

e Excellent quality public domain versions have been written and dis-
tributed for several platforms in source code.

o It is a common language in CAD systems.

We must consider, however, the slow execution speed of Lisp which is
even more serious obstacle on a small PC system. Although in the sense of
ease of programming it would have been more advantageous to realize the
system entirely in Lisp, this solution would have resulted in inacceptable run
time on the target system.

3.2.2 The structure of the Rafael system

For the reasons mentioned in the previous section reason we chose a hybrid
structure depicted in fig. 3.5.

Graph editor Graph compiler
Output
Implemented in C++ Implemented in C++ code

Xlisp interpreter
Runs : database routines, code generator routines

Figure 3.5: Structure of the Rafael software

Fach part of the software where user modifications are not supposed
was implemented in C4++4. This gives us a relatively powerful language
with acceptable execution speed. Programmability is provided at Lisp level
where an interface has been defined for the database and code generator
programmer. By means of this interface the user can extend the database
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and the code generator library. The compiler core calls these routines from
C++ level and uses their return value appropriately.

This solution needed separate tasks and interprocess communication be-
tween the tasks. The minimal “operating system” that is sufficiently popular
and needs small resources was the Microsoft Windows. At that time Linux (a
small Unix version for PCs) was not in the state that we could have consid-
ered it as a alternative against Windows. By my personal opinion Windows
is a poorly designed, inefficient “operating system”, today we would choose
some other platform.

Thus, Rafael was implemented under MS-Windows, parts of this software
(fig. 3.5) run as separate Windows tasks and they are connected through
the interprocess communication channels of Windows. The popular Xlisp
was chosen as Lisp interpreter for Rafael because it is close to Common
Lisp and it is available in C source. Xlisp was ported to Windows platform
and the necessary interprocess routines were inserted that allows this Lisp
interpreter to run as a server task.

The three Rafael software components have the following tasks.

Graph editor The name is a bit exaggerating as the Rafael framework is
far from a confortable working environment. It features a multi-screen
text editor for creating/modifying graphs in textual format, initializes
the Xlisp server and launches the Rafael compiler on the actually edited
graph.

Graph compiler It is the SFG compiler. This program analyzes graph
description, makes the scheduling and generates the output text. It
can run standalone as well, not only from the framework.

Lisp interpreter The operation database and its associated code generator
routines are realized in Lisp. The client programs launch the server and
send requests to it through interprocess links. Requests are actually
Lisp commands which are executed by the server and the result of the
Lisp command evaluation is returned to the caller C++ program.

As we can see the Rafael software architecture is very similar to that of
Gabriel (section 3.1.1) hence the similarity of the names. Rafael is different
from Gabriel at the following points :

e Rafael’s whole structure is adapted to the small host systems it runs
on. Not the whole compiler was implemented in Lisp, only a part of
it.
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o As we will see, Rafael’s whole design including the database, the sched-
uler it uses is adapted to heterogeneous systems. Gabriel was multi-
largel as it supported multiple start libraries. Rafael is truly heteroge-
neous as multiple target processors can coexist in the same operation
library.

e Rafael supports a limited form of run-time decisions as its importance
has been underlined many times both in the literature and in the prac-
tical engineering work. It will be detailed in section 3.2.4.

o Rafael features more advanced and efficient scheduler algorithms.

3.2.3 Rafael nodes and connections

The Rafael software model defines nodes that represent certain operations
and connectlions between them. Nodes can be of the following types.

Operations Operations cover functions attached to a certain node. An
operation is a parametrizable function. The number of inputs, outputs,
the execution time and the operation of the function itself can depend
on constant parameters.

Probes Probes cover functions whose task is to acquire input data from
the environment of the dataflow system and send output data to the
environment of the dataflow system. Probes are treated as simple op-
erations (with nonzero execution time, if necessary), the only difference
is that they are explicitly forced to certain processors by the user. It
derives from the fact that in a given hardware system the input and
output hardware is assigned to prescribed processors.

Delays Delays are special operations in the sense that they consist of two
parts: a delay input (where new data is put into the delay) and delay
output (where new data is retrieved from the delay). Rafael always
treats a delay parts as two distinct operations. It is guaranteed, how-
ever, that output of a delay be scheduled always before the input of
the same delay.

Each node input/output can have a type. Type is a character string
which is checked for matching when node inputs/outputs are connected.
Rafael allows dynamic type names resolved in compile-time that match to
every static type name and solves the type name ambiguities. In Rafael



94 CHAPTER 3. RAFAEL SFG COMPILER

dynamic type names start with the “TYPE” string, for example “TYPE23”
is an dynamic type string. An adder that can add any type of data can have
“TYPE23” type of each input/output node. When any of the input/outputs
is connected to an output/input with static type, the dynamic type is re-
placed by the static type by the type checker. For example if the output
of the hypotetical adder above is connected to an input node with “TIME”
type, “TYPE23” is replaced by “TIME” for all the adder input/outputs and
type checking continues on the inputs. Figure 3.6 illustrates the process.

@ TYPEL T|MEM
(e

TIME TIME

Typeerror !

Figure 3.6: Propagating type names in Rafael

Depending on the operation library, “tokens” can have arbitrary size.
The actual Rafael operation library supports one-dimensional vector tokens.

3.2.4 Rafael software model

Rafael accepts a restricted version of synchronous dataflow graphs for schedul-
ing. This restriction means that if a node output produces or input con-
sumes more than one tokens, it can be connected only to an input or out-
put that consumes or produces one token. See figure 3.7 for examples.
This simplified scheme allows Rafael to support practically relevant up-
sampling/downsampling operations without getting to a problematic loop
scheduling problem [Bhat94a, Bhat94b].

Rafael has two software models. The first one is a classical synchronous
dataflow model which does not allow run-time decisions. This model has
been proved to be too restrictive but this is the most effective one. It allows
all kinds of supported operations in the dataflow graph but no conditional
structures are permitted, we will call it static model in the future. The static
scheduler will be invoked for this graph and a single-block schedule will be
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Allowed connections in Rafael

Not allowed connections in Rafagel

Figure 3.7: Rafael’s restricted synchronous dataflow graph

generated. This model is the restricted version of the second one that allows
runtime decisions.

INPl\

INP2

OouT1

Figure 3.8: Example static model graph

Based on the conditioned dataflow model of synchronous languages (sec-
tion 1.3.4) a conditioned block dataflow model was implemented in Rafael, we
will call it dynamic model. As presented in section 3.1.3 inserting if ... endif
constructs around each operation and considering all conditions (rue is an
evident but not too efficient solution for the run-time decision problem. In-
stead Rafael forces the SFG designer to group parts of the graph to a block.
A block contains a graph portion for which the following holds true :

1. The graph portion inside a block is a synchronous dataflow graph with-
out run-time decisions

2. All the operations in this block depends on the same condition.
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Figure 3.9: Example dynamic model graph

Outside of the blocks only probes and blocks are allowed. This is called
root level. Operations are embedded into blocks, this is the block level.

The simple scheduling scheme used in Rafael solves the scheduling prob-
lem in two passes.

1. First it prepares static schedule for each block independently. Variables
are propagated through the root level block connections and static
scheduler is invoked for the block.

2. Dynamic root-level scheduling. Blocks are considered as operations
which run on all the processors at the same time. A list scheduler
traverses the block connections and builds the order of the block con-
sidering only dependency relations. During the execution a block may
or may not be executed depending on its condition input variable (if

any).

Figure 3.10 demonstrates this method on the example dynamic model
graph in fig. 3.9.
Advantages of the conditioned block schedule are the following :

e We can provide conditional structures while preserving static schedul-
ing.

o The user of the system is forced to group nodes with the same condition
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C1 O PL| AL| A2 A3 | : P1 |B2| B4
c2| c3 P2 A4 P2 | Bl B3| B5
Schedule for Block C Schedule for Block A Schedule for Block B
P1
Block C Block A Block B
P2

Dynamic schedule (block executions are conditioned)
Figure 3.10: Example of dynamic model scheduling
together, the performance loss resulting from the repeated conditional
statements is thus avoided.

The static scheduling algorithm estimates the reality much better than
in the SynDEx case. As a block contains only synchronous dataflow,

the static scheduling is always exact, not only in the worst case as in
SynDEx.

SIGNAL compiler readily makes the operation grouping itself.

We have to mention the following disadvantages :

o If the blocks contain to few operations, static schedules of blocks can

be too sparse. In this case even true dynamic scheduling could provide
better solution.

o [t is very easy to construct an incorrect graph. Consider the graph

in fig. 3.11. In this example Block B depends on Block A and in the
root-level dynamic scheduling it is scheduled after Block A. It cannot
be guaranteed, however, that Block A was really executed because it
depends on a run-time decision. If the condition of Block A is not true,
Block B will get its input from obsolete temporary variables producing
bad result. As Rafael makes no effort to check the calculation of con-
dition variables, these situations cannot be signaled by the compiler.

Other effect of the fact that Rafael does not analyze the condition cal-
culation is that all the condition variables must be recalculated in each
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iteration. We can recall that SIGNAL compiler laboriously optimizes
the condition tree so that its output program can be the “laziest” which
means that if ... endif structures belonging to a clock expression
on the lower level of the clock tree will be appropriately nested into
if ... endifs of upper level clocks. The scheme presented above will
flatten the clock tree putting all clock expressions to level 1.

Cc2

Condition of Block

Condition of Block B

OuUT1

Figure 3.11: Example of possibly erroneous graph

In spite of the disadvantages we consider that the Rafael conditioned
block model avoids successfully the dynamic scheduling and in the case of
large static blocks and few decisions (which is often true at a DSP algorithm)
it is sufficiently efficient.

3.2.5 Rafael hardware model

Rafael supposes arbitrary number of interconnected, heterogeneous proces-
sors as target system. The communication hardware connecting these pro-
cessors can be heterogeneous as well. The static scheduling algorithm pre-
scribes, however, that execution times of operations on all the processors of
the target system and communication times on all the channels in the target
system be known in advance. These calculation/communication times can
depend on certain parameters, in the case of calculations these parameters
are defined by the operation type, in the case of communication it depends
on the amount of data units passed between the processors.
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Rafael uses a simplified communication model, critiques say it is oversim-
plified. Rafael considers the communication structure totally interconnected
but allows different communication costs for both directions of each chan-
nel. The actual Rafael implementation does not have router algorithm so if
the target architecture is not totally interconnected, virtual communication
layer must be provided by the operation library programmer.

The basic Rafael communication notion is the channel. Channels are
resources that are shared by processor pairs willing to communicate. A
channel is assigned to each processor pair and that channel is occupied for
the length of the communication between that processor pair. Other pro-
cessor pairs having the same channel number has to wait with their request
until the channel is free. Channels represent hardware resources used for
communication (bus, network, communication links, etc.). The processor
pair-channel number asignment is fixed in the hardware database.

Fach communication activity can have three property which are returned
by the hardware database functions to the compiler core.

Activity time It is the time during which the communication activity oc-
cupies the processor it is scheduled on. If the communication hardware
needs constant interaction with the processor (buffered serial line hard-
ware, for example) the activity time is the same as the time required
for the communication activity. In the case of DMA it is the DMA
initialization time.

Survive time This is the time which is needed to finish the communication
after the activity itself finishes. For example a DMA is initialized
during the activity time then it accomplishes the task. During the
survive time the variable which is sent cannot be reused and no new
communication activities can be accomplished on that channel. On
the receiving side all the calculations which need the received variable
are delayed until the end of the survive time.

Synchronous flag This flag controls the scheduling of communication ac-
tivities. If this flag is false for a certain communication activity, the
scheduler can put the send activity before the receive activity of the
same communication pair. No “crosses” are allowed, however (see fig
3.12). If the synchronous flag is true, the send and receive activities
are scheduled strictly at the same time.
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Figure 3.12: Allowed and not allowed communication schemes

3.3 The internal structure of the Rafael system

3.3.1 Graph description language

The actual Rafael implementation does not contain graph editor, the user
must construct the input algorithm graph himself or herself. A simple graph
description language is used for this purpose which will be described briefly
in this section.

According to the two software models in Rafael, there are two varia-
tions of the graph description language. In the first variation (synchronous
dataflow) only probes, nodes, delays and connections are allowed. Let’s see
an example graph:

PROBE I 1 1 A_TYPE 1 1
PROBE I 2 1 A_TYPE 1 1
PROBE 0 7 1

NODE 4 ADD (4)

NODE 5 ADD (4)

NODE 6 ADD (4)

NODE 8 MUL (4)

NODE 3 CONST ((1 2 3 4))
DELAY 9 4 1

CONNECTION 1_1 4_1
CONNECTION 2_1 4_2
CONNECTION 2_1 5_1
CONNECTION 3_1 5_2
CONNECTION 4_1 6_1
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CONNECTION 5_1 6
CONNECTION 6_1 8
CONNECTION 3_1 9
CONNECTION 9_1 8
CONNECTION 8_1 7

PROBE <I/O> <nodenum> <type> <upsample> <downsample>
<I/0> is the input/output probe type, <nodenum> is the number of
the node, <type> is its type name. For convenience of the compiler,
Rafael stores the relative sample rate of the node in rational form.
<upsample> is the nominator, <downsample> is the denominator of
the relative sample rate. (see section 3.3.4).

NODE <nodenum> <operation> <parameters> <nodenum> is the
node number, <operation> is the function attached to the node, <parameters>
is the parameter list which depends on the function. In the case of the
example ADD operation it deteremines the size of the vectors to be

added.

DELAY <nodenum> <delay size> <delay length> <nodenum> is the
number of the node, <delay size> is the size of one token it stores,
<delay length> is the number of delay stages data fed into the delay
goes through. Delays exlicitly have TYPE1 inputs/output types.

CONNECTION <onode>_<onum> <inode>_<inum> Defines a con-
nection between the output numbered <onum> of the node having
<onode> node number and an input described by similar parameters.

The conditioned block dataflow model allows block definitions beside the
elements above. In this model only probes, block definitions and connection
definitions are permitted at root level.

BLOCK MADD2 I1->6_1:TYPE1 I2->5_2:TYPE1 I3->5_1:TYPE1 \
01->6_1:TYPE1

NODE 5 MUL (4)

NODE 6 ADD (4)

CONNECTION 5_1 6_2

ENDBLOCK MADD2

BLOCK MUL2 C:BOOL I1->6_1:TYPE1l I2->5_2:TYPE1 I3->5_1:TYPE1 \
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01->6_1:TYPE1
NODE 5 MUL (4)

NODE 6 MUL (4)
CONNECTION 5_1 6_2
ENDBLOCK MUL2

PROBE I 1 1 A_TYPE 1 1
PROBE I 2 1 A_TYPE 1 1
PROBE I 3 1 A_TYPE 1 1
PROBE I 10 1 BOOL 1 1
PROBE 0 7 1

NODE 4 MADD2

NODE 5 MUL2

CONNECTION 10_1 5_C
CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION

RN R WN R
[ S N SN S S S |
NI I TG T NN NN N
»—kloot\)»—kwm»—sl

The only new element is the BLOCK ... ENDBLOCK definition pair. Blocks
group their internal nodes into one virtual operation that can be placed by
a NODE definition. An internal node in a block is identified by its block name
and node number, two blocks can have internal nodes with the same node
number as internal nodes are invisible outside of a block. The block header
contains the following elements :

I<inputnum> — ><inp nodenum>_<inp inputnum>:<typename>
Connects <inputnum> input of the virtual operation represented by
the block to <inp inputnum> input of <inp nodenum> internal node.
Type of the block’s input is set to <typename>. Data fed into that
input of the block will be propagated to the internal node’s input.

O<onum> — ><onodenum> _ <out outputnum>:<typename> Connects
<onum> output of the virtual operation represented by the block to
<out outputnum> output of <onodenum> internal node. Type of the
block’s output is set to <typename>. Data produced by that output of
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the internal node will be propagated through the output of the virtual
node.

C:<typename> Indicates that the block has condition input and the type
of the condition input is <typename>. Condition input can be refer-
enced as “C” in the CONNECTION definition.

3.3.2 The database

Rafael provides a programmable operation and hardware database stored in
Lisp. The database is accessed by the compiler core through Lisp functions.
The interface of these Lisp functions is documented so that the database
programmer can interface to the compiler core.

The database consists of two parts: operation database and hardware
database. Operation database stores the actual function set for all the sup-
ported hardware devices while hardware database provides Lisp functions
that can calculate every characteristic of the target hardware system which
is necessary for scheduling and code generation.

The database is handled and maintained through the XLisp interpreter
and stored in Lisp lists. Because XLisp runs under Windows , all its memory
is virtualized so we can store the whole database in the memory of XLisp.
This simplifies greatly the implementation of the database management be-
cause we simply use the built-in list manipulating functions of LISP.

The operation database

The operation database has two parts : operation headers and compilation
strategy functions. The operation headers are stored in lists which are bound
to the operation name. This list stores the following information:

e The name of the compilation strategy routine.
e The description of the input(s) (type, size).

o The description of the output(s) (type, size, storage class, sample rate
factor).

e The execution time in system clock beats.

o Parameters. The parameters and their meaning are defined by the
creator of the operation library. For example the parameters for the
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FIR operation can be the length of the filter and the filter coefficients.
The actual value of the parameters are supplied when the user places
an operation, it is passed in the SFG script.

e Constructor and destructor routines. The compiler creates constructor
function for each operation which requests it. The constructors are
invoked before the operation is executed first time. Similarly, before
the SFG execution terminates, destructor functions are called for the
operations which need it.

The data structure above is described in a list like the following :

strategy list)

inputs )

outputs )

time function )

parameters ) )

constructor strategy list )
destructor strategy list )

NN NN

The strateqy list contains the names of the compilation strategy functions
for each hardware devices. It has the following format :

( (devicel functionl) (device2 function2) ... (deviceN functionN) )

The compilation strategy function is called each time during the code
generation pass when the schedule contains a reference to that function and
its program text must be generated. This LISP function gets the label lists
of the input and output branch descriptors (effectively labels of data areas
where the compiler allocated space for the temporary variables), the param-
eter list (which contains data like coefficient vector of a filter, e.t.c.) and
returns the program text to the compiler which writes it into the output file.
The strategy function can decide on the subroutine chosen or the form of
the generated program text depending on the input and output connections
and the actual parameters. The subroutine bodies can be stored in an or-
dinary object library, in this case Rafael will place only references into the
code which can be resolved by the linker which belongs to the DSP’s devel-
opment system. This subroutine library can be created and maintained by
the assembler and library manager tools of the DSP development software
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package. Other design style is to inline all the operation bodies which results
in slightly faster code but larger code size.

The excellent symbol handling capability of the LISP which makes this
language so appropriate for the artifical intelligence applications can be ex-
ploited in this system and we can build significant intelligence into the strat-
egy functions.

The input list stores the description of the operation’s input. Its format
is the following :

( ( typel sizel ) (type2 size2) ... (typeN sizelN) )

where type is the freely chosen signal type (for example time for time
domain signals) and size is the size of input vector accepted by this node.
This size can also be a symbol from the parameter list (for example the size
of an FFT input can be N where N is a parameter supplied by the SFG
designer) or even a lambda function of the parameters. The type name can
be either static or dynamic. Dynamic type names have the form of “TYPEn”
where n is an integer number. Dynamic type names are resolved when they
are connected to a statical one.

The output list is similar, but beside type and size it also contains the
storage class specifier and the upsample and downsample factors. Its format
is the following :

( ( typel sizel stl usl dsl) (type2 size2 st2 us2 ds2)
(typeN sizeN stN usN dsN) )

The storage class specifier shows whether the compiler has to allocate
space for the output variable or the space is reserved by the operation.
The us and ds values describe the change in sampling frequency caused by
the operation. The us denotes the multiplication, ds is the division of the
sampling frequency. For example the pair 2 1 means interpolation by 2.

The time function list stores a Lisp functions which get the bound param-
eter list and return the execution time of the operation on a given hardware.
The list has the following format :

( ( devicel lambdal ) ( device2 lambda2 )
( deviceN lambdaN ) )

where lambdal ... lambdaN are lambda expressions (no-header Lisp
functions) which compute the execution time for the given device.
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The parameter list contains operation-dependent data. For example in
the case of an IIR filter it contains the size of the nominator and denomina-
tor coefficient vectors and the vectors themselves. In the operation header
the list is stored in unbound form (without parameter values), the editor
evaluates this list when placing an operation. The IIR parameter list would
look like the following in unbound form :

(N COEF1 M COEF2) )
and in bound form (after the operation has been placed)
(3 (0.34 -0.2 2.12) 4 (0.23 0.77 0.192 2.94) )

This bound form is stored in the SFG description file and is passed to
the execution time computing and stategy functions when necessary.

The constructor and destructor strategy lists have the same format as
the strategy function. An operation may have constructor and/or destructor
functions - pieces of code which are executed before the operation first runs
and after the operation’s last run. If the operation does not need such
functions, NIL is stored instead of the name.

The following small code piece shows the implementation of the ADD
database entry for the TMS320C30 and DSP96002.

(setq add ’((
; c30add is C30 strategy function
(c30 c30add)
; dsp96kadd is 96K strategy function
(dsp96k dsp96kadd)
)
; Has two inputs, each of size n (n is the operation parameter)
( (typel n) (typel n) )
; Has one output, size n, automatic storage,
; interpolating factor: 1
( (typel n a1 1))
; Time functions for C30 ...
( (30 (+ (* 2 n) 10) )
; and 96K
(dsp96k (+ (* 2 n) 5) )
)

; Has only one parameter (n)
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(n)
; No constructor for C30 and 96K

( (c30 nil) (dsp96k nil) )
; No destructor for C30 and 96K

( (c30 nil) (dsp96k nil) )

Target hardware database

The target hardware database provides the following information to the com-
piler core:

e Processor numbers and processor types in the target system.

o Activity, survive times and synchronization flag for any communication
activity.

e Communication cost estimation for any communication path in the
target system (for the scheduler)

e Channel-processor pair assignment for any processor pair.

A set of Lisp functions must be written for each target system. It is a
relatively inconvenient solution but allows greater flexibility.

3.3.3 Rafael memory management

Rafael allocates memory for temporary variables in compile time. When
the generated program runs on the target system, every variable is already
assigned a memory address. Rafael implements a simple “first fit” dynamic
memory allocation scheme when compiling the graph.

When a node is scheduled, Rafael allocates its output variables (the input
variables must have already been allocated). The scheduler keeps track of
the actual state of memory map by the means of chunk lists which describe,
actually what size of blocks are occupied at what address in the memory
of the target processor. When allocating a variable the memory manager
simply walks this chain and finds the memory block with the lowest address
which is big enough to accomodate the variable to be allocated.

When an output variable is created, its “scope” is established. A variable
goes out of scope if all the operations that consume this variable has already
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been executed. In this case the memory chunk assigned to the variable is
freed and the place the variable occupied can be reused. As the scheduler
cannot know when allocating the variable, on which processor(s) that vari-
able will be consumed, every instance (variable sent to other processors)
of that variable stays “alive” on every processor until all operations that
consume that variable terminate.

A variable can be local or global. Local variables are used internally by
blocks. A variable is local if it is created in a block not at root level and it
is consumed only by the operations of that block (so it is not connected to a
block output). Every other variable is global. Blocks have their own address
maps that start at relative address 0. At the end of the scheduling when we
know, how much memory is required for the global variables, local variable
addresses are relocated so that these variables be allocated starting at the
end of the memory allocated for global variables. Local variables of blocks
thus overlay each other. (figure 3.13)

3.3.4 Compiler passes

Rafael compiler works in 5 passes.

Reading graph description file

The compiler reads in the SFG file and parses it syntactically. Then it
analyzes the connection definitions and signals connection errors (connecting
to nonexisting node, nonexisting input, etc.) During this phase the compiler
rebuilds the tree in the memory of the computer, ready for analysis.

Type checking

The compiler resolves the dynamic type names and checks if there are type
errors (see section 3.2.2 for further explanation). The type checker is a
recursive routine that propagates the static type names from node to node
substituting dynamic type names with static ones and signaling errors if
type name violation is found. This algorithm is the following in pseudocode
(omitting now the block handling logic):

; Node is a reference to a node input/output, CType is
; the type name to be checked against
function CheckTypeNames( Node , CType )
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Var3
Var3 Va2
Va2 a
Var2
Varl Var 1l Varl
Memory map for Block A Memory map for Block B Memory map for root block

Memory map for Block A Memory map for Block B

memory top
Var3
Var2
Var2
Varl Varl
Var3
Va2 Root block variables
Varl
base address

Final memory map

Figure 3.13: Block memory overlaying in Rafael (supposing 1 processor)
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begin

if Node’s type 1is dynamic
substitute all instances of that dynamic type name
with ctype on that node;

else
compare Node’s type with CType, signal error
if not equal;

endif

end

; Node is a reference to a node input/output,
; CType is the static type name of a node connected
; to that input/output
function CheckNodeType( Node, CType )
begin
CheckTypeNames( Node, CType );
mark Node typechecked;
for i:=all input/outputs of the node Node belongs to
for n:=all nodes connected to i
if not typechecked before
CheckNodeType( n,type of i );
endif
endfor
endfor
end;

The type checking starts at descendants of probes as they are the only
nodes that surely do not have dynamic types.

IPF checking

IPF stands for interpolation factor and is used to support Rafael’s multirate
features (section 3.2.4). IPF is the rate of the node’s execution in the multi-
rate model. IPF is represented by two distinct numbers, the nominator and
the denominator so IPF:1,4 means 1/4 execution rate.

Rafael uses a recursive subroutine similar to the typechecker to propagate
IPFs along the graph and looks for the minimal IPF factor. Propagating
IPF means that the IPF at the input of the operation is multiplied by the
sample frequency multiplication factor stored in the database at the output
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N1 %@ N2 @ N3
IPF: 1 14 5/4
Loop 4 times
Loop 5times

Figure 3.14: IPF's in an example graph and looped schedule

description yielding output IPF then it is passed to all the nodes connected
to the outputs. The actual implementation of Rafael prescribes that the
output sample on all the outputs be the same. During the IPF propagation
the minimal IPF in the graph is recorded. As IPF is calculated by division
or multiplication by integer factor, all IPFs in the graph must be integer
multiple of the minimal IPF. So the factor

IPFnode
U = T

is the loop count that determines, how many times an operation with IPF
IPF,,q. must be repeated if the minimal IPF is IPF,,;,. Note that oper-
ations that change IPF are always executed on the higher sample rate of
input and output sample rates. (fig. 3.14)

Scheduling

The formally correct, typechecked graph with IPF values for all the nodes
calculated is then passed to the scheduler algorithm. The actual version of
Rafael contains only the RHLS scheduler (section 2.3) but work is under way
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to implement the much more efficient Springplay schedulers in the software.
The only difference to the already presented version of RHLS is that it
considers node repetition resulted by the multiple sample rate loops (see
IPF checking section). The schedulers considers effective node execution

time as ¢joop - 15, , and tries to group nodes with same IPF together.

n7p

Code generation

The scheduling done, Rafael generates the output text for each processor.
The code generator walks the activity list on each processor then asks the
Lisp code generator database functions to produce output text for them
which is then sent to the output file. Separate output files are generated for
each processor. The model of output text will be discussed in detail in the
next section.

3.3.5 Code generation model

Rafael has a parametrizable code generator that allows each section of the
text generated to be redefined. The code generator invokes Lisp functions
that receive the parameters of the text section and the device for which the
code will be generated then it is the responsability of these Lisp functions
to produce the appropriate text. These code pieces are called code genera-
tor service functions and they complement the operation strategy routines.
Every text section that Rafael writes to the output text file can be redefined
by modifying either the operation strategy functions (in the case of opera-
tion texts) or the code generation service functions (headers, communication
routine codes, etc.).

Rafael expects the database functions to produce ready assembly text
that is not modified further by the core. As it was pointed out in [Lee89b]
simply concatenating text pieces that correspond to blocks and not consider-
ing postoptimization possibilities that “smooth” the block borders can lead
to important inefficiencies. For example two consecutive blocks where one of
them is connected to the output of the second can result in a code fragment

like this:

move r0,buffer ; Storing the result of block 1
; End of block 1, head of block 2
move buffer,r0 ; Fetching first operand of block 2
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Postoptimizer is proposed to filter out similar code sequences in the
Gabriel system. [Pow92] presents another approach based on a kind of
“meta-assembly” that allows multiple optimization strategies. For example
it uses symbolic register names in this metalanguage that are substituted
by real register names during the code generation in order to optimize reg-
ister usage. A block supposes that it always gets inputs in registers and
it always produce results in registers, “register-memory spilling” operations
(register-memory transfers that save/retrieve register contents to/from tem-
porary variables) are inserted by the compiler. The complicated strategies
are reported to result in excellent quality output text. Rafael code genera-
tor functions can perform a lot of optimization but they do not know about
the blocks that precede and follow the actual block so Rafael cannot exploit
block interferences.

Rafael generates three text sections for each processor (that may be
empty as well). For programmable processor-like devices that Rafael was
designed for, the database programmer may wish to realize these three sec-
tions as subroutines. These sections are the following:

1. Constructor section. Called only once from the user program before
the first iteration of the dataflow computation.

2. Operation section. Called once for each iteration. Calling the oper-
ation section entry label will actually execute the program generated

from the SFG.

3. Destructor section. Called once after the last iteration of the operation
section.

Each section has a start and end header that probably contain section head
label in the start header and “return” instruction in the end header. The
sections contain the text generated by the operation constructor, strategy
and destructor functions.

If the compiled SFG was written in block conditioned model, each sec-
tion has a separated part for each block. In the constructor and destructor
sections it is rather a formality as Rafael guarantees no specific order among
the operations when it generates constructor and destructor sections. In
the operation section each block has a start and end header. The current
operation library realizes blocks as subroutines so the start header defines a
block entry point label and the end header contains a “return” statement.
The block subroutine contains the operation body texts in the schedule or-
der. After block subroutines were generated, Rafael emits the text for the
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root block that contains probe calls and block invocations. Block invoca-
tions in the current operation library result in subroutine “calls” to block
subroutines.

An example program generated from the second example SFG in section
3.3.1 is shown below.

;1.asm

; Device type : TMS320C30

;Rafael code generator, Version 1.1

;Task requires 13 words of memory and takes 17 cycles
; to execute

VARO .set arena+00h ; Node 1 Type : A_TYPE, output 1
VAR7 .set arena+04h ; Node 6 Type : TYPE1l, output 1
VAR1 .set arena+04h ; Node 2 Type : A_TYPE, output 1
VAR4 .set arena+08h ; Node 6 Type : TYPE1l, output 1
VAR2 .set arena+08h ; Node 3 Type : A_TYPE, output 1
VARS .set arena+0Ch ; Node 10 Type : BOOL, output 1
; Variables for block MUL2

VARG .set arena+0Dh ; Node 5 Type : TYPE1l, output 1
; Variables for block MADD2

VAR3 .set arena+0ODh ; Node 5 Type : TYPE1l, output 1

; Constructor section

.def constr
constr:; Constructors for block MADD2
;  Constructors for block MUL2

retsu

; Operation section
.def operators

operators:

; Head of block MADD2

MADD2:

; Node 5,scheduled at O
.data
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ptraMADD25: .word  VAR2
ptrbMADD25: .word  VAR1
ptroMADD25: .word  VARS3
.text
1di @ptraMADD25, ar0
1di @ptrbMADD25,arl
1di @ptroMADD25, ar2
1di 3,rc
rptb 110
mpyf3  *arO++(1),*arl++(1),rl
110: stf ril,*ar2++(1)
; Node 6,scheduled at 8
.data
ptraMADD26: .word  VARO
ptrbMADD26: .word  VAR3
ptroMADD26: .word VAR4
.text
1di @ptraMADD26,ar0
1di @ptrbMADD26,arl
1di @ptroMADD26,ar2
1di 3,rc
rptb 111
addf3 *ar0++(1) ,*xari++(1),r1
111: stf rl,*ar2++(1)
retsu

; End of block MADD2
; Head of block MUL2
MUL2:

; Node 5,scheduled at O

.data
ptraMUL25: .word VAR4
ptrbMUL25: .word  VAR1
ptroMUL25: .word VARG
.text
1di @ptraMUL25,ar0
1di @ptrbMUL25,ar1
1di @ptroMUL25,ar2

1di 3,rc

115
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rptb 112
mpyf3  *arO++(1),*arl++(1),rl
112: stf rl,*ar2++(1)

; Node 6,scheduled at 8

.data
ptraMUL26: .word  VARO
ptrbMUL26: .word VARG
ptroMUL26: .word  VAR7
.text
1di @ptraMUL26,ar0
1di @ptrbMUL26,arl
1di @ptroMUL26,ar2
1di 3,rc
rptb 113
mpyf3  *arO++(1),*arl++(1),rl
113: stf rl,*ar2++(1)
retsu

; End of block MUL2
; Head of block ROOT

ROOT:
; Probe 1
1di VARO, ar0
call probe_ROOT1
; Probe 2
1di VAR1,ar0
call probe_ROOT2
; Probe 3

1di VAR2,ar0

call probe_ROOT3
; Calling block MADD2

call MADD2

; Probe 10
1di VAR5, ar0
call probe_ROOT10
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; Calling block MUL2

if VARS
call MUL2
endif
; Probe 7
1di VAR7 ,ar0
call probe_ROOT7
retsu
; End of block ROOT
retsu

; Destructor section
.def destr
destr:
;  Destructors for block MADD2
;  Destructors for block MUL2
retsu

3.4 Conclusions on the Rafael project

Well, when I say a last farewell to the Rafael project I think I could be a
little less formal. The project was launched with ambitious aims keeping
in sight the existing systems. As it turned out quite soon, Rafael cannot
compete in complexity with the most advanced systems partly because of
the limited capabilities of the host computer we chose, partly because of
the significantly less human resources we could devote to the project. The
final product, the compiler itself has been implemented but many support
programs that would make its usage convenient have not been even planned.
For this reason the actual Rafael system is not so “user-friendly”. As all
the resources were concentrated on the compiler development, important
parts of the system have not achieved yet the necessary level. The most
important among them is the operation database that contains only about
a dozen operations only for the TMS320C30 and DSP96002 DSPs. A brave
user of Rafael must face the immediate task of filling up the database which
requires Lisp programming. Lisp is considered a difficult language among
the users although the simple functions needed by the compiler core should
be easy to implement for a bit more experienced programmer.
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Two distinct influences can be discovered in the Rafael design. The first
one is Lee’s synchronous dataflow approach and the Gabriel system which
gave us the first notions, how Rafael should look like. We quickly faced,
however, the need of run-time decisions and the difficulties it causes in a
system based on synchronous dataflow. The second influence that we em-
bedded into Rafael was the way the synchronous language compilers work
and SynDEx transformes their output to distributed code. Critique of the
SynDEx approach was given and a model that was easy to implement to an
existing synchronous dataflow system was developed and realized. Limits of
this model were pointed out but we consider that in many practical cases,
notably in the DSP case they are acceptable. Further researches are con-
ducted to find a better way for handling dynamic structures in a dataflow
system.

So Rafael project achieved its aims at the following points :

o A flexible multi-target SDF compiler has been realized on PC platform.

o Effective scheduling algorithms have been developed for the heteroge-
neous case.

Rafael still has a long way to go at the following fields :

e More user-friendly environment. (graph editor, database editor tools,
etc.)

e Complete databases for various DSP processors.

I leave this work, however, to others ...
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