
  

Understanding the Dalvik bytecode with the 
Dedexer tool
Gabor Paller

gaborpaller@gmail.com
2009.12.02

mailto:gaborpaller@gmail.com


  

Background
● As we all know, Android is a Linux-Java 

platform.
● The underlying operating system is a version of 

Linux
● The application model exposed to the developer is 

Java-based
● Android is not Java

● Google does not use the Java logo in relation with 
Android

● Android application model has no relationship with 
any Java standard (JSR)



  

Dalvik
● At the core of Android, there is the proprietary 

Dalvik virtual machine executing Android 
programs.

● Some interesting Dalvik properties 
● It lives in symbiosis with the Linux process/access 

right system to provide application separation
● It has its own bytecode format which is in distant 

relationship with the Java bytecode format



  

Life of a Java application in Android
● Java is just a front-end

● Developer codes in Java
● The source code is compiled by the Java compiler 

into .class files
● Then the dx (dexer) tool which is part of the Android 

SDK processes the .class files into Dalvik's 
proprietary format

● The result of a proprietary file format called DEX 
that contains Dalvik bytecode.

● The format has only distant relationship with the 
Java bytecode



  

Why should you care?
● Well, you shouldn't

● You have to dig very deep to find discrepancies 
between the execution environment projected by 
Dalvik and JVM (dynamic code generation, 
classloading).

● If you develop your own language (like Simple), you 
may compile directly to Dalvik bytecode. Even in 
this case there is an option of compiling to Java 
bytecode first and leave the Dalvik bytecode to dx.

● Big exception: reverse engineering



  

Inside the APK



  

Disassembly options
● For binary XML files, use a binary-to-textual 

XML converter like AXMLPrinter2
● For the DEX file, use dedexer

● Alternative products:
– Dexdump – comes with the Android SDK, less convenient 

to use than dedexer because e.g. it does not support 
labels, produces one large file, etc.

– Baksmali – a competing open-source DEX disassembler. 
Comes with a Dalvik bytecode assembler (smali)

● In any case, you have to live with Dalvik 
bytecode disassembly – there's no way back to 
Java presently!



  

Using dedexer
● Download ddx.jar from 

http://dedexer.sourceforge.net
● Unpack the DEX file from the APK file.
● Issue:

java -jar ddx.jar -d target_dir source_dex_file
● The decompiled files will be produced in 

target_dir with .ddx extension. We will learn, 
how to read those files.

http://dedexer.sourceforge.net/


  

The DEX format
● Main difference between the standard Java 

.class and DEX is that all the classes of the 
application are packed into one file.
● This is not just packing, all the classes in the same 

DEX file share the same field, method, etc. tables.
● In Dalvik, classes from the same DEX file are 

loaded by the same class loader instance.



  

Single DEX file vs. many .class files
● Let's see the numbers

● Example class set: total of 11 .class files, sum of 
sizes: 21395 bytes.

● Converted into DEX: 17664 bytes, 17% gain.
● Zipping both (JAR packing and APK packing does 

this): 
– 13685 bytes (.class)
– 9148 bytes (DEX)
– 33% gain!

● The DEX format is more suitable for mobile 
computing due to its more dense encoding.



  

Register- and stack-based VMs

● Standard JVM is stack-based. Operations remove 
inputs from the stack and put result(s) back onto the 
stack. 
– One stack level can hold any type (char to float). 
– Double and long values need two consecutive stack 

levels.
● Dalvik is register-based. 

– Virtual registers – up to 64k registers although most 
instructions can use only the first 256.

– One register can hold any type (char to float)
– Double and long values need two consecutive registers.



  

Register vs. stack example: 
Java original

public int method( int i1,int i2 ) {
        int i3 = i1*i2;
        return i3*2;
}



  

Register vs. stack example: 
Java bytecode

.method public method(II)I

.limit locals 4

.var 0 is this LTest2; from Label0 to Label1 ; “this”

.var 1 is arg0 I from Label0 to Label1 ; argument #1

.var 2 is arg1 I from Label0 to Label1 ; argument #2
Label0:
        iload_1 ; load local variable #1 onto the stack
        iload_2 ; load local variable #2 onto the stack
        imul ; pop the two topmost stack level, multiply 
them, push the result back onto the stack
        istore_3 ; store into local variable #3
        iload_3 ; load local variable #3 onto the stack
        iconst_2 ; push constant 2 onto the stack

   imul ; multiply, push back the result
Label1:
        ireturn
.end method



  

Register vs. stack example: 
Dalvik bytecode

.method public method(II)I

.limit registers 4
; this: v1 (Ltest2;)
; parameter[0] : v2 (I)
; parameter[1] : v3 (I)
        mul-int v0,v2,v3 ; v0=v2*v3
        mul-int/lit-8   v0,v0,2 ; v0=v0*2
        return  v0
.end method



  

Dalvik register frames
● Dalvik registers behave more like local 

variables
● Each method has a fresh set of registers.
● Invoked methods don't affect the registers of 

invoking methods.



  

Which one is better?
● Current processors are register-based

● Register-based bytecode is easier to map
● Stack needs memory access

● Stack is slower than registers.
● Eventually it all depends on the JIT compiler 

which turns stack operations into register 
operations.

● However, if the bytecode is register-based, JIT 
compiler may be simpler-> smaller ROM 
footprint!



  

Types
● No surprises for those who know Java bytecode.
● Base types

● I – int
● J – long
● Z – boolean
● D – double
● F – float
● S – short
● C – char
● V – void (when return value)

● Classes: Ljava/lang/Object;
● Arrays: [I, [Ljava/lang/Object;, [[I
● List of types: simple concatenation

● obtainStyledAttributes(Landroid/util/AttributeSet;[III)



  

Methods
● Rich meta-information is assigned to Dalvik 

methods (just like in Java VM)
● Method meta-information:

● Signature
● Try-catch information
● Annotations
● Number of registers used
● Debug information

– Line numbers
– Local variable lifetime



  

Method head example
.method private callEnumValues()[Ljava/lang/Object;
.annotation systemVisibility 
Ldalvik/annotation/Signature;
    value [Ljava/lang/String; = { "()[TT;" }
.end annotation
.limit registers 6
; this: v5 (Ljava/lang/ClassCache;)
.catch java/lang/IllegalAccessException from lbc5b4 to 
lbc5ce using lbc5e0
.catch java/lang/reflect/InvocationTargetException from 
lbc5b4 to lbc5ce using lbc5f0
.catch java/lang/NoSuchMethodException from lbc58c to 
lbc5b0 using lbc5d0
.var 5 is this Ljava/lang/ClassCache; from lbc58c to 
lbc59e



  

Method invocations
● Methods are

● Static if the “this” argument is not implicitly provided 
as the first argument.

● Direct if they cannot be overridden
– In this case they are invoked directly, without involving 

vtable
– private methods, constructors

● Virtual if they can be overridden in child classes
– In this case they are invoked using a vtable associated to 

the class.



  

Method invocations, 2.
● invoke-virtual  
{v1,v2},java/lang/StringBuilder/append  
;append(Ljava/lang/String;)Ljava/lang/StringBui
der;
; v1 : Ljava/lang/StringBuilder; , v2 : 
Ljava/langString;
        move-result-object      v1
; v1 : Ljava/lang/StringBuilder;

● Observe:
● That the first argument of the method invocation is “this” as 

this is a non-static method.
● That invoked method does not corrupt the invoking method's 

registers.
● That the method return value must be obtained by a special 

instruction family (move-result-*)



  

Instruction families
● Move between registers: move, move/from16, move-wide, move-

wide/from16, move-object, move-object/from16.
● Obtaining and setting the result value: move-result, move-result-wide, move-

result-object, return-void, return, return-wide, return-object
● Exception handling: throw, move-exception
● Constants to registers: const/4, const/16, const, const/high16, const-

wide/16, const-wide/32, const-wide, const-wide/high16, const-string, const-
class

● Synchronization: monitor-enter, monitor-exit
● Type checking: check-cast, instance-of
● Array manipulation: new-array, array-length, filled-new-array, filled-new-

array/range, fill-array-data
● Instance creation: new-instance
● Execution control: goto, goto/16, packed-switch, sparse-switch, if-eq, if-ne, 

if-lt, if-ge, if-gt, if-le, if-eqz, if-nez, if-ltz, if-gez, if-gtz, if-lez
● Comparations: cmpl-float, cmpg-float, cmpl-double, cmpg-double, cmp-long 



  

Instruction families, 2.
● Read/write member fields: iget, iget-wide, iget-object, iget-boolean, iget-byte, 

iget-char, iget-short, iput, iput-wide, iput-object, iput-boolean, iput-byte, iput-
char, iput-short

● Read/write array elements: aget, aget-wide, aget-object, aget-boolean, aget-
byte, aget-char, aget-short, aput, aput-wide, aput-object, aput-boolean, aput-
byte, aput-char, aput-short

● Read/write static fields: sget, sget-wide, sget-object, sget-boolean, sget-
byte, sget-char, sget-short, sput, sput-wide, sput-object, sput-boolean, sput-
byte, sput-char, sput-short

● Method invocation: invoke-virtual, invoke-super, invoke-direct, invoke-static, 
invoke-interface, invoke-virtual/range, invoke-super/range, invoke-
direct/range, invoke-static/range, invoke-interface/range

● Conversion in any direction among int, long, float, double
● Operations on int, long, float, double: add, sub, mul, div, rem, and, or, xor, 

shl, shr, ushr, neg-(int, long, float, double), not-(int,long)
● ODEX instructions: execute-inline, invoke-direct-empty, iget-quick, iget-wide-

quick, iget-object-quick, iput-quick, iput-wide-quick, iput-object-quick, invoke-
virtual-quick, invoke-virtual-quick/range, invoke-super-quick, invoke-super-
quick/range



  

Exercise 1.
.method private swap([II)V
.limit registers 5
; this: v2 (Ltest10;)
; parameter[0] : v3 ([I)
; parameter[1] : v4 (I)
        aget    v0,v3,v4 ; v0=v3[v4]
        add-int/lit8    v1,v4,1 ; v1=v4+1
        aget    v1,v3,v1 ; v1=v3[v1]
        aput    v1,v3,v4 ; v3[v4]=v1
        add-int/lit8    v1,v4,1 ; v1=v4+1
        aput    v0,v3,v1 ; v3[v1]=v0
        return-void
.end method



  

Solution 1.
private void swap( int array[], int i ) {
       int temp = array[i];
       array[i] = array[i+1];
       array[i+1] = temp;
}



  

Exercise 2.
.method private sort([I)V
; this: v6 (Ltest10;)
; parameter[0] : v7 ([I)
        const/4 v5,1 ; v5=1
        const/4 v4,0 ; v4=0
l2c4:   move    v0,v4 ; v0=v4
        move    v1,v4 ; v1=v4
l2c8:   array-length    v2,v7    ; v2=v7.length
        sub-int/2addr   v2,v5 ; v2=v2-v5
        if-ge   v0,v2,l2ee ; if( v0>=v2) -> l2ee
        aget    v2,v7,v0 ; v2=v7[v0]

   add-int/lit8    v3,v0,1  ; v3=v0+1
        aget    v3,v7,v3 ; v3=v7[v3]
        if-le   v2,v3,l2e8 ; if( v2<=v3 ) ->l2e8
        invoke-direct   {v6,v7,v0},Test10/swap  ; 
swap([II)V
        move    v1,v5 ; v1=v5 
l2e8:   add-int/lit8 v0,v0,1     ; v0=v0+1

  goto    l2c8    ; -> l2c8
l2ee:   if-nez  v1,l2c4 ; if( v1 != 0 ) ->l2c4
        return-void



  

Solution 2.
private void sort( int array[] ) {
  boolean swapped;
  do {
    swapped = false;
    for( int i = 0 ; i < array.length - 1; ++i )
      if( array[i] > array[i+1] ) {
        swap( array, i );
        swapped = true;
      }
  } while( swapped );
}



  

Exercise 3.
const/16        v1,8
new-array       v1,v1,[I
fill-array-data v1,l288
invoke-direct   {v0,v1},Test10/sort     ; sort([I)V
...
l288:   data-array
                0x04, 0x00, 0x00, 0x00  ; #0
                0x07, 0x00, 0x00, 0x00  ; #1
                0x01, 0x00, 0x00, 0x00  ; #2
                0x08, 0x00, 0x00, 0x00  ; #3
                0x0A, 0x00, 0x00, 0x00  ; #4
                0x02, 0x00, 0x00, 0x00  ; #5
                0x01, 0x00, 0x00, 0x00  ; #6
                0x05, 0x00, 0x00, 0x00  ; #7
        end data-array



  

Solution 3.

        int array[] = {
            4, 7, 1, 8, 10, 2, 1, 5
        };
        instance.sort( array );



  

Example 4.
.method private read(Ljava/io/InputStream;)I
.limit registers 3
; this: v1 (Ltest10;)
; parameter[0] : v2 (Ljava/io/InputStream;)
.catch java/io/IOException from l300 to l306 using l30a
l300:
        invoke-virtual {v2},java/io/InputStream/read   ; 
read()I
l306:   move-result     v0 ; v0=read()
l308:   return  v0
l30a:   move-exception  v0 ; v0=IOException reference
        const/4 v0,15 ; v0=-1 (sign-extended 0xF)
        goto    l308
.end method



  

Solution 4.
private int read( InputStream is ) {
        int c = 0;
        try {
            c = is.read();
        } catch( IOException ex ) {
            c = -1;
        }
        return c;
}



  

DEX optimization
● Before execution, DEX files are optimized.

● Normally it happens before the first execution of code from the DEX file
● Combined with the bytecode verification
● In case of DEX files from APKs, when the application is launched for the 

first time.

● Process
● The dexopt process (which is actually a backdoor to  the Dalvik VM) 

loads the DEX, replaces certain instructions with their optimized 
counterparts

● Then writes the resulting optimized DEX (ODEX) file into the 
/data/dalvik-cache directory

● It is assumed that the optimized DEX file will be executed on the same 
VM that optimized it! ODEX files are not portable across VMs.



  

Optimization steps
● DEX instructions are affected like the following

● Virtual (non-private, non-constructor, non-static methods)
invoke-virtual <symbolic method name> ->
invoke-virtual-quick <vtable index>
– Before: invoke-virtual  {v1,v2},java/lang/StringBuilder/append  ; 

append(Ljava/lang/String;)Ljava/lang/StringBuilder;
– After: invoke-virtual-quick    {v1,v2},vtable #0x3b

● 13 frequently used methods: invoke-virtual/direct/static <symbolic 
method name> -> execute-inline <method index>
– Before: invoke-virtual  {v2},java/lang/String/length
– After: execute-inline  {v2},inline #0x4

● instance fields: iget/iput <field name> -> iget/iput <memory offset>
– Before: iget-object     v3,v5,android/app/Activity.mComponent
– After: iget-object-quick v3,v5,[obj+0x28]



  

The role of optimization
● Sets byte ordering and structure alignment 

(remember the data-array in exercise 3.)
● Aligns the member variables to 4/8 byte 

boundary (the structures in the DEX/ODEX file 
itself are 32-bit aligned)

● Significant optimizations because of the 
elimination of symbolic field/method lookup at 
runtime.

● Helps the JIT compiler making it simpler and 
faster



  

Dependencies
● In order to guarantee integrity of the field 

offsets/vtable indexes, Dalvik must make sure 
that the same set of dependent ODEX files 
(ODEX files from which the current ODEX file 
uses a class) is used for execution and for the 
optimization.

● The list of dependent ODEX files are stored in 
the ODEX file, along with their hash.

● If the ODEX file is digitally signed, this prevents 
tampering.



  

ODEX disassembly
● If the dependency files are available, Dedexer 

can disassemble an ODEX file back to symbolic 
format.
● Go to /dalvik/dalvik-cache on the system the ODEX 

file comes from.
● Fetch the files you find there into a directory of your 

development machine.
● Use the -e flag when you invoke the disassembler.



  

ODEX symbolic disassembly
● Before:

iget-object-quick       v3,v5,[obj+0x28]
  invoke-virtual-quick    {v3},vtable #0xe
  move-result-object      v0
 execute-inline  {v2},inline #0x4
 move-result     v1

● After:
iget-object-quick       v3,v5,mComponent 

Landroid/content/ComponentName;     ;[obj+0x28]
invoke-virtual-quick    

{v3},android/content/ComponentName/getClassName   ; 
getClassName()Ljava/lang/String; , vtable #0xe
 move-result-object      v0
  execute-inline  {v2},Ljava/lang/String/length   ; 
length()I , inline #0x4

move-result     v1



  

Conclusion

● Dalvik is a clever compromise between 
preserving the developer's knowledge of Java 
and a proprietary, mobile-optimized VM
● Except for deep system programming (e.g. juggling 

with classloaders), the developer is not aware that 
Dalvik is not a JVM.

● The DEX format can be up to 30% more 
efficient when it comes to compressed size.



  

Conclusions 2.
● The register-based bytecode can be interpreted 

with sufficiently high speed after some simple 
optimizations.

● When JIT is used, JIT compiler may be simpler 
hence needing less memory.

● Biggest gap: Dalvik (as released today) has 
only mark&sweep GC.
● On the importance of GC: G. Paller: Increasing Java Performance in 

Memory-Constrained Environments by Using Explicit Memory 
Deallocation, 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.9268

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.9268

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

